1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liula [17]
3 years ago
6

A cyclist is riding a bicycle at a speed of 22 mph on a horizontal road. The distance between the axles is 42 in., and the mass

center of the cyclist and the bicycle is located 26 in. behind the front axle and 40 in. above the ground. If the cyclist applies the brakes only on the front wheel, determine the shortest distance in which he can stop without being thrown over the front wheel. The shortest distance in which the cyclist can stop without being thrown over the front wheel is

Physics
1 answer:
stealth61 [152]3 years ago
5 0

Answer:

The shortest distance is  S = 24.86 ft

Explanation:

The free body diagram of this question is shown on the first uploaded image

From the question we are told that

   The speed of the bicycle is v_b = 22\ mph = 22 * \frac{5280}{3600}   =  32.26 ft/s

     The distance between the axial is  d = 42 \ in

The mass center of the cyclist and the bicycle is m_c = 26 \ in  behind the front axle

The mass center of the cyclist and the bicycle is m_h = 40 \ in above the ground

   For the bicycle not to be thrown over the

     Momentum about the back wheel must be zero so

                \sum _B = 0

=>             mg (26) = ma(40)

=>             a = \frac{26}{40} g

Here  g = 32.2 ft/s^2

     So     a =  \frac{26}{40} (32.2)

             a =  20.93 ft/s^2

Apply the equation of motion to this motion we have

       v^2 = u^2 + 2as

 Where  u = 32.26 ft /s

             and v = 0 since the bicycle is coming to a stop

        v^2 = (32.26)^2 - 2(20.93) S

=>      S = 24.86 ft        

                 

You might be interested in
Can someone help with thsi? i will give brainliest
kogti [31]

Answer:

40 meters. look for the dot above the 20 on the x-axis and follow it over to the left.

Explanation:

4 0
3 years ago
The Hall effect can be used to determine the density of mobile electrons in a conductor. A thin strip of the material being inve
solmaris [256]

Answer:

the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³

Explanation:

Given the data in the question;

we make use of the following expression;

hall Voltage VH = IB / ned

where I = 2.25 A

B = 0.685 T

d =  0.107 mm =  0.107 × 10⁻³ m

e = 1.602×10⁻¹⁹ C

VH = 2.59 mV = 2.59 × 10⁻³ volt

n is the electron density

so from the form; VH = IB / ned

VHned = IB

n = IB / VHed

so we substitute

n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )

n = 1.54125 /  4.4396226 × 10⁻²⁶

n = 3.4716 × 10²⁵ m⁻³

Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³

5 0
3 years ago
A car approaches you at a constant speed, sounding its horn, and you hear a frequency of 76 Hz. After the car goes by, you hear
Talja [164]

Answer:

70.07 Hz

Explanation:

Since the sound is moving away from the observer then

f_o = f_s\frac {(v+vs)}{v} and f_o = f_s\frac {(v-vs)}{v} when moving towards observer

With f_o of 76 then taking speed in air as 343 m/s we have

76 = f_s\times\frac {(343-vs)}{343}

f_s=\frac {343\times 76}{343-v_s}

Similarly, with f_o of 65 we have

65 = f_s\times\frac {(343+vs)}{343}\\f_s=\frac {343\times 65}{343+v_s}

Now

f_s=\frac {343\times 65}{343+v_s}=\frac {343\times 76}{343-v_s}

v_s=27.76 m/s

Substituting the above into  any of the first two equations then we obtain

f_s=70.07 Hz

4 0
3 years ago
At a certain instant, coil A is in a 10-T external magnetic field and coil B is in a 1-T external magnetic field. Both coils hav
Neporo4naja [7]

Answer:

A) coil A

Explanation:

According to Faraday, Induced emf is given as;

E.M.F = ΔФ/t

ΔФ = BACosθ

where;

ΔФ  is change in magnetic flux

θ is the angle between the magnetic field, B, and the normal to the loop of area A

A is the area of the loop

B is the magnetic field

From the equation above, induced emf depends on the strength of the magnetic field.

Both coils have the same area and are oriented at right angles to the field.

Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.

7 0
4 years ago
An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
OverLord2011 [107]

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×10^{-4} m

dynamic viscosity = 1.75 ×10^{-5} Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ \frac{du}{dy}

so

= µ  \frac{v}{h}   ............1

put here value

= 1.75×10^{-5} × \frac{v}{10^{-4}}

= 0.175 v

and

area between air and puck is given by

Area = \frac{\pi }{4} d^{2}

area  =  \frac{\pi }{4} 0.1^{2}

area = 7.85 × \frac{v}{10^{-3}} m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × 10^{-3}

force = 1.374 × 10^{-3} v    

and now apply newton second law

force = mass × acceleration

- force = mass \frac{dv}{dt}

- 1.374 × 10^{-3} v = 0.03 \frac{0.9v - v }{t}

t =  \frac{0.1 v * 0.03}{1.37*10^{-3} v}

time = 2.18

so time required after impact for a puck is 2.18 seconds

3 0
3 years ago
Other questions:
  • An electric generator transforms mechanical energy into electrical energy. This process could be done by which of these?
    9·2 answers
  • 15) On a cold day, you take in 4.2 L (i.e., 4.2 x 10-3 m3) of air into your lungs at a temperature of 0°C. If you hold your brea
    13·1 answer
  • WHat is the correct definnition for recovery heart rate ?
    10·1 answer
  • True or False: Erosion is the process that causes the removal of material by moving water, ice, and wind.
    9·1 answer
  • A comet has a period of 324 years; in other words, it orbits the Sun in 324 years. Most likely, this comet came from...(Hint: 32
    12·1 answer
  • Physicists and engineers from around the world have come together to build the largest accelerator in the world, the Large Hadro
    11·1 answer
  • A dog whistle is designed to produce a sound with a frequency beyond that which can be heard by humans (between 20 000 Hz and 27
    12·1 answer
  • During a home run, the batter only needs to run around all 4 bases if he wants to, since the ball cleared the outfield fence.
    6·1 answer
  • 11 Design Imagine that a scientistdiscovered a way to make africtionless surface. What wouldbe some useful applications forthis
    8·1 answer
  • What do you think explains the pattern of planet density in the solar system
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!