Answer:
Water > Box of books > Stone > Ball
Explanation:
We'll begin by calculating the potential energy of each object. This can be obtained as follow:
For stone:
Mass (m) = 15 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 3 m
Potential energy (PE) =?
PE = mgh
PE = 15 × 10 × 3
PE = 450 J
For water:
Mass (m) = 10 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 9 m
Potential energy (PE) =?
PE = mgh
PE = 10 × 10 × 9
PE = 900 J
For ball:
Mass (m) = 1 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 20 m
Potential energy (PE) =?
PE = mgh
PE = 1 × 10 × 20
PE = 200 J
For box of books:
Mass (m) = 25 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 2 m
Potential energy (PE) =?
PE = mgh
PE = 25 × 10 × 2
PE = 500 J
Summary:
Object >>>>>>>> Potential energy
Stone >>>>>>>>> 450 J
Water >>>>>>>>> 900 J
Ball >>>>>>>>>>> 200 J
Box of books >>> 500 J
Arranging from greatest to least, we have:
Object >>>>>>>> Potential energy
Water >>>>>>>>> 900 J
Box of books >>> 500 J
Stone >>>>>>>>> 450 J
Ball >>>>>>>>>>> 200 J
Water > Box of books > Stone > Ball
<span>The Badminton World Federation</span>
Hrdudikdodidbshshsjjsksks
Answer:
The girl has greater tangential acceleration
Explanation:
The angular acceleration (
) of the merry go round is equal to the rate of the change of the angular velocity,
:

Since all the points of the merry go round complete 1 circle in the same time, the angular velocity of each point of the merry go round is the same, and so all the points also have the same angular acceleration.
The tangential acceleration instead is given by

where
is the angular acceleration
r is the distance from the centre of the merry go round
Since the girl is near the outer edge and the boy is closer to the centre, the value of r for the girl is larger than for the boy, so the girl has greater tangential acceleration.
the answer is c) the speed and direction of travel must be constant