Answer:
The MATLAB Code for this PI Controller will be:
Kp = 350;
Ki = 300;
Kd = 50;
C = pid(Kp,Ki,Kd)
T = feedback(C*P,1);
t = 0:0.01:2;
step(T,t)
Explanation:
When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.
Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to reduce the overshoot
Add an integral control to reduce the steady-state error
Adjust each of the gains $K_p$, $K_i$, and $K_d$ until you obtain a desired overall response.
The further explanation is attached in the Word File.
Answer:
See attached picture.
Explanation:
See attached picture for explanation.
Answer:
a). Work transfer = 527.2 kJ
b). Heat Transfer = 197.7 kJ
Explanation:
Given:
= 5 Mpa
= 1623°C
= 1896 K
= 0.05 
Also given 
Therefore,
= 1 
R = 0.27 kJ / kg-K
= 0.8 kJ / kg-K
Also given : 
Therefore,
= 

= 0.1182 MPa
a). Work transfer, δW = 
![\left [\frac{5\times 0.05-0.1182\times 1}{1.25-1} \right ]\times 10^{6}](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B5%5Ctimes%200.05-0.1182%5Ctimes%201%7D%7B1.25-1%7D%20%20%5Cright%20%5D%5Ctimes%2010%5E%7B6%7D)
= 527200 J
= 527.200 kJ
b). From 1st law of thermodynamics,
Heat transfer, δQ = ΔU+δW
= 
=![\left [ \frac{\gamma -n}{\gamma -1} \right ]\times \delta W](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B%5Cgamma%20-n%7D%7B%5Cgamma%20-1%7D%20%5Cright%20%5D%5Ctimes%20%5Cdelta%20W)
=![\left [ \frac{1.4 -1.25}{1.4 -1} \right ]\times 527.200](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cfrac%7B1.4%20-1.25%7D%7B1.4%20-1%7D%20%5Cright%20%5D%5Ctimes%20527.200)
= 197.7 kJ
Answer:
74,4 litros
Explanation:
Dado que
W = nRT ln (Vf / Vi)
W = 3000J
R = 8,314 JK-1mol-1
T = 58 + 273 = 331 K
Vf = desconocido
Vi = 25 L
W / nRT = ln (Vf / Vi)
W / nRT = 2.303 log (Vf / Vi)
W / nRT * 1 / 2.303 = log (Vf / Vi)
Vf / Vi = Antilog (W / nRT * 1 / 2.303)
Vf = Antilog (W / nRT * 1 / 2.303) * Vi
Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25
Vf = 74,4 litros