Answer with Explanation:
The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:
1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.
2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.
3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity the resistance it offer's to shear forces and the torques is more.
While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.
Answer:
The work of the cycle.
Explanation:
The area enclosed by the cycle of the Pressure-Volume diagram of a Carnot engine represents the net work performed by the cycle.
The expansions yield work, and this is represented by the area under the curve all the way to the p=0 line. But the compressions consume work (or add negative work) and this is substracted fro the total work. Therefore the areas under the compressions are eliminated and you are left with only the enclosed area.
But where are the options?
Answer: D
Explanation: When you change your transmission fluid you change your filter. When you do that you clean where the filter was. Then you can put the new filter on and the new fluid.
Answer:
c) Strain
Explanation:
For example, the shear strain “γ” on the surface of the rod is determined by measuring the relative angle of twist “φg” over a gage length “Lg”.