1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hammer [34]
2 years ago
15

Engineered lumber should not be used for

Engineering
1 answer:
Dimas [21]2 years ago
8 0

Answer:

Composite panel garage doors

Explanation:

You might be interested in
To determine if a product or substance being used is hazardous, consult:__________.
qwelly [4]

Answer:

Option B: An MSDS

Explanation:

A dictionary is used to check up the meaning of general words and not for checking if a substance being used is hazardous. Option A is wrong.

MSDS means "Material Safety Data Sheet" and it contains documents with information that relates to occupational health & safety for checking various substances and products. Thus, option B is correct.

SAE stands for Society of Automotive Engineering and their standards pertain to mainly Automobiles. Thus option C is wrong.

EPA guidelines are mainly for checking facility and environmental health and safety compliance. Thus, option D is wrong.

3 0
3 years ago
(a) Calculate the heat flux through a sheet of steel that is 10 mm thick when the temperatures oneither side of the sheet are he
aleksandr82 [10.1K]

Answer:

do the wam wam

Explanation:

6 0
3 years ago
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
3 years ago
Read 2 more answers
Two resistors, A and B, individually connect to a 9V battery. A student notices that resistor A is warmer than resistor B. Which
dybincka [34]

Answer:

Resistor B

Explanation:

Since resistance is the opposition to the flow of current in a circuit,

first let assume the two resistors are connected in parallel to the voltage, recall that when connection is in parallel, the different amount of current pass through the resistors depending on the value with the small resistor having  a lower resistance effect hence higher current will pass through

The energy dissipated in each resistor can be calculated as

E=\frac{1}{2}IR^{2}t.

from the formula we can conclude that the energy value will be higher for the resistor with small resistance value. hence more heating effect which will cause it to be warm.

Also when connected individually the current flow from the voltage source will pass through the resistor which when we calculate the energy dissipated, the resistor with smaller value will be higher because it will draw more current which will in turn lead to a heating effect and cause the resistor to be warm. Hence we can conclude that the resistance B has greatest resistance value.

4 0
3 years ago
What is didactic apparatus?​
Soloha48 [4]
Didactic apparatus is a method of teaching in which scientific approach is follow in order to present the information to the student. This method effectively teaches the student with the required theoretical knowledge .
8 0
3 years ago
Other questions:
  • An 80-L vessel contains 4 kg of refrigerant-134a at a pressure of 160kPa. Determine (a) the temperature, (b) the quality, (c) th
    11·1 answer
  • Consider the following class definitions: class smart class superSmart: public smart { { public: public: void print() const; voi
    6·1 answer
  • The army has cars and boats etc right
    7·1 answer
  • A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th
    7·1 answer
  • A motorist enters a freeway at 25 mi/h and accelerates uniformly to 65 mi/h. From the odometer in the car, the motorist knows th
    14·1 answer
  • Consider a cubic workpiece of rigid perfect plastic material with side length lo. The cube is deformed plastically to the shape
    10·1 answer
  • Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 125kPa. What is the isentropic efficiency (percent) of this turb
    15·1 answer
  • Stakeholders are people or organizations who do what?
    10·2 answers
  • Code for XOR with two input logic gate
    8·1 answer
  • NO SCAMS
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!