Answer:
P(final) is 2.4 times P(initial).
Explanation:
Here we can assume that the cylinder did not break and it's volume and number of moles of gas present in the cylinder remains constant.
Given the temperature increases by a factor of 2.4. Let us assume that the initial temperature be
and the final temperature be
.
Given that 
Now we know the ideal gas equation is PV=nRT
here V=constant , n=constant , R=gas constant(which is constant).





Answer:
The net force on the box is 2 N to the left.
The box will move to the left.
The acceleration on the box is 0.5 m/s^2 to the left.
Explanation:
Let's say movement to the right is positive and left is negative.
Bob: +10 N
John: -12 N
Add those together and you get a net force of -2 N, and the negative sign means that the box is moving to the left.
For the acceleration:
Fnet = ma
-2 = (4 kg)a
a = -0.5 m/s^2
Again, the negative sign in this answer means the box is being accelerated to the left.
Answer:
The force per unit length (N/m) on the top wire is 16.842 N/m
Explanation:
Given;
distance between the two parallel wire, d = 38 cm = 0.38 m
current in the first wire, I₁ = 4.0 kA
current in the second wire, I₂ = 8.0 kA
Force per unit length, between two parallel wires is given as;

where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
Substitute the given values in the above equation and calculate the force per unit length

Therefore, the force per unit length (N/m) on the top wire is 16.842 N/m
B. The gravity acceleration is in the same direction as the force of gravity, and thus towards the centre of the earth