Answer:
-30 °C
Explanation:
First, we have to calculate the molality (m) of the solution. If the solution is 50% C₂H₆O₂ by mass. It means that in 100 g of solution, the are 50 g of solute (C₂H₆O₂) and 50 g of solvent (water).
The molar mass of C₂H₆O₂ is 62.07 g/mol. The moles of solute are:
50 g × (1 mol / 62.07 g) = 0.81 mol
The mass of the solvent is 50 g = 0.050 kg.
The molality is:
m = 0.81 mol / 0.050 kg = 16 m
The freezing-point depression (ΔT) can be calculated using the following expression.
ΔT = Kf × m = (1.86 °C/m) × 16 m = 30 °C
where,
Kf: freezing-point constant
The normal freezing point for water is 0°C. The freezing point of the radiator fluid is:
0°C - 30°C = -30 °C
Answer:
When boiling water is poured into a thick tumbler its inner surface expands. However, due to low thermal conductivity of glass, the expansion of outer surface of the tumbler is quite small. Due to uneven expansion of the outer and inner surfaces, the tumbler breaks.
Explanation:
hope it helps please mark me as a brainliest please
8) the energy released by fusion is generally 3 to 4 times larger than with fission. Fission has very few by-products but fusion releases large amounts of radioactive particles because it starts with large nuclei.
9) Alpha particles are 2 protons and 2 neutrons all put together. It's really the nucleus of a helium atom. It is most dangerous if you ingest it but it can be stopped with a sheet of paper so outside the body it's not as dangerous as others and due to its size it can't get very far in the air before hitting air molecules
beta particles are high energy electrons or positrons. They travel further due to their small size but can be stopped by a thin barrier of plastic or wood.
Gamma rays are high frequency photons (light) They are stopped by metal plates and go through human tissue. They are quite dangerous.
10) The mass that is lost in chemical reactions is very small. Solve E=mc² for mass and you get m=E/c². This says the mass you lose is equal to the energy you gained divided by the speed of light squared. c² is a VERY big number so you need a lot of energy produced to notice it. Chemical reactions are simply too inefficient to get that much energy out.
11)You need high temperatures for fusion because you're trying to push two atoms together (to "fuse" them as the name suggests) The electrons in one atom repel the other electrons in the other atoms. When stripped down to only protons, you still have to overcome this repulsion (Coulomb repulsion). High temperatures means high velocity of the particles in the plasma. This gives them enough "oomph" to get close enough to fuse. Once close enough to each other, the nuclear force takes over and overwhelms the Coulomb repulsion and the nuclei fuse and release energy in doing so.
Really long we’ll not long but far in distance
Answer:
Millions or hundreds of million of years
Explanation:
It takes a very long time for decaying substances to form fossil fuels. It takes around millions or hundreds of million of years for the transformation to occur. This explains why they aren’t renewable.
Decayed plant materials usually form coal while decayed animal materials form crude oil.