Answer:
72.54 degree west of south
Explanation:
flow = 3.9 m/s north
speed = 11 m/s
to find out
point due west from the current position
solution
we know here water is flowing north and ship must go south at an equal rate so that the velocities cancel and the ship just goes west
so it become like triangle with 3.3 point down and the hypotenuse is 11
so by triangle
hypotenuse ×cos(angle) = adjacent side
11 ×cos(angle) = 3.3
cos(angle) = 0.3
angle = 72.54 degree west of south
Answer:
The center of mass of the two-ball system is 7.05 m above ground.
Explanation:
<u>Motion of 0.50 kg ball:</u>
Initial speed, u = 0 m/s
Time = 2 s
Acceleration = 9.81 m/s²
Initial height = 25 m
Substituting in equation s = ut + 0.5 at²
s = 0 x 2 + 0.5 x 9.81 x 2² = 19.62 m
Height above ground = 25 - 19.62 = 5.38 m
<u>Motion of 0.25 kg ball:</u>
Initial speed, u = 15 m/s
Time = 2 s
Acceleration = -9.81 m/s²
Substituting in equation s = ut + 0.5 at²
s = 15 x 2 - 0.5 x 9.81 x 2² = 10.38 m
Height above ground = 10.38 m
We have equation for center of gravity

m₁ = 0.50 kg
x₁ = 5.38 m
m₂ = 0.25 kg
x₂ = 10.38 m
Substituting

The center of mass of the two-ball system is 7.05 m above ground.
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
C) A current is induced in the coiled wire, which lights the light bulb
The moving magnetic field creates electricity which lights the light bulb
Hope it helps!