The tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
<h3>Tension in the cable</h3>
Apply the principle of moment and calculate the tension in the cable;
Clockwise torque = TL sinθ
Anticlockwise torque = ¹/₂WL
TL sinθ = ¹/₂WL
T sinθ = ¹/₂W
T = (W)/(2 sinθ)
T = (29 x 9.8)/(2 x sin57)
T = 169.43 N
<h3>Vertical component of the force</h3>
T + F = W
F = W - T
F = (9.8 x 29) - 169.43
F = 114.77 N
Thus, the tension in the cable is 169.43 N and the vertical component of the force exerted by the hi.nge on the beam is 114.77 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
A) A buoy rises in the water as a boat speeds past.
Explanation:
The passing boat transfers energy in the form of a wave. Other options illustrate other physics concepts like gravity (falling egg) or Newton's law (for every action, there is an equal and opposite reaction).
Answer:Twice
Explanation:
It is given that car is raised on a lift with respect to ground.
Suppose car is raised by a height of h m from ground having mass m so gain in Potential Energy by car is
Gain in 
Now if it were raised twice as high,i.e. 2 h height from ground then gain in Gravitational Potential Energy


It is clear that 
Thus in second case gain in Potential Energy is twice as compared to first case