The equation for Kinetic Energy is KE = 1/2 m v^2, where m is the mass, and v is the velocity. The velocity in this equation is squared, which means that it is exponential. That means that as the velocity increases, you will be multiplying by a bigger and bigger number! KE = 18 joules!
Answer
22.5 m/s
Explanation
We shall use the trigonometric ratio cosine to find the horizontal component.
cos = adjacent/hypotenuse
Adjacent is the horizontal and hypotenuse is the fly speed.
cos 30° = horizontal / 26
horizontal velocity = 26 × cos 30°
= 26 × 0.866
= 22.5166
= 22.5 m/s
Inelastic collision happens when two objects joined and move together after the collision
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.
Answer:
So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.