<u>Answer:</u> The molality of
solution is 0.782 m
<u>Explanation:</u>
Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molality:
.....(1)
Given values:
Moles of
= 0.395 mol
Mass of solvent (water) = 0.505 kg
Putting values in equation 1, we get:

Hence, the molality of
solution is 0.782 m
<span>Tin has a molecular weight of 118.7 That is the mass in grams of one mole. 3.50
</span><span>118.7 = 415Four hundred and fifteen grams</span>
Answer:
I think first one..........
Answer:
Mass = 28.08
Explanation:
Given data:
Mass of Al₂O₃ = 21.8 g
Mass of water = 9.7 g
Mass of Al(OH)₃ = ?
Solution:
Chemical equation:
2Al(OH)₃ → Al₂O₃ + 3H₂O
Number of moles of water:
Number of moles = mass/molar mass
Number of moles = 9.7 g/ 18 g/mol
Number of moles = 0.54 mol
Number of moles of Al₂O₃:
Number of moles = mass/molar mass
Number of moles = 21.8 g/ 101.96 g/mol
Number of moles = 0.21 mol
Now we will compare the moles of Al(OH)₃ with Al₂O₃ and H₂O.
Al₂O₃ : Al(OH)₃
1 : 2
0.21 : 2×0.21 = 0.42 mol
H₂O : Al(OH)₃
3 ; 2
0.54 : 2/3×0.54 = 0.36 mol
Mass of Al(OH)₃:
Mass = number of moles × molar mass
Mass = 0.36 mol × 78 g/mol
Mass = 28.08 g
Answer:
A balanced chemical equation represents a chemical reaction that obeys the Law of Conservation of Mass (Matter). It can be thought of as describing how many atoms or molecules of reactants are consumed in order to produce a certain number of atoms or molecules of products.