1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
4 years ago
10

when their center-to-center separation is 50 cm. The spheres are then connected by a thin conducting wire. When the wire is remo

ved, the spheres repel each other with an electrostatic force of 0.2525 N. What were the initial charges on the spheres
Physics
1 answer:
Lera25 [3.4K]4 years ago
6 0

Answer:

q1 = 7.6uC , -2.3 uC

q2 = 7.6uC , -2.3 uC

( q1 , q2 ) = ( 7.6 uC , -2.3 uC ) OR ( -2.3 uC , 7.6 uC )

Explanation:

Solution:-

- We have two stationary identical conducting spheres with initial charges ( q1 and q2 ). Such that the force of attraction between them was F = 0.6286 N.

- To model the electrostatic force ( F ) between two stationary charged objects we can apply the Coulomb's Law, which states:

                              F = k\frac{|q_1|.|q_2|}{r^2}

Where,

                     k: The coulomb's constant = 8.99*10^9

- Coulomb's law assume the objects as point charges with separation or ( r ) from center to center.  

- We can apply the assumption and approximate the spheres as point charges under the basis that charge is uniformly distributed over and inside the sphere.

- Therefore, the force of attraction between the spheres would be:

                             \frac{F}{k}*r^2 =| q_1|.|q_2| \\\\\frac{0.6286}{8.99*10^9}*(0.5)^2 = | q_1|.|q_2| \\\\ | q_1|.|q_2| = 1.74805 * 10^-^1^1 ... Eq 1

- Once, we connect the two spheres with a conducting wire the charges redistribute themselves until the charges on both sphere are equal ( q' ). This is the point when the re-distribution is complete ( current stops in the wire).

- We will apply the principle of conservation of charges. As charge is neither destroyed nor created. Therefore,

                             q' + q' = q_1 + q_2\\\\q' = \frac{q_1 + q_2}{2}

- Once the conducting wire is connected. The spheres at the same distance of ( r = 0.5m) repel one another. We will again apply the Coulombs Law as follows for the force of repulsion (F = 0.2525 N ) as follows:

                          \frac{F}{k}*r^2 = (\frac{q_1 + q_2}{2})^2\\\\\sqrt{\frac{0.2525}{8.99*10^9}*0.5^2}  = \frac{q_1 + q_2}{2}\\\\2.64985*10^-^6 =   \frac{q_1 + q_2}{2}\\\\q_1 + q_2 = 5.29969*10^-^6  .. Eq2

- We have two equations with two unknowns. We can solve them simultaneously to solve for initial charges ( q1 and q2 ) as follows:

                         -\frac{1.74805*10^-^1^1}{q_2} + q_2 = 5.29969*10^-^6 \\\\q^2_2 - (5.29969*10^-^6)q_2 - 1.74805*10^-^1^1 = 0\\\\q_2 = 0.0000075998, -0.000002300123

                         

                          q_1 = -\frac{1.74805*10^-^1^1}{-0.0000075998} = -2.3001uC\\\\q_1 = \frac{1.74805*10^-^1^1}{0.000002300123} = 7.59982uC\\

 

You might be interested in
Which pair of triangles can be proven congruent by the hl theorem?
hoa [83]

The pairs of triangles that can be proven congruent by the hl theorem is the right angled triangle.

<h3>What is mearnt be the HL theorm?</h3>

The HL theorem is also known as the Hypothenus Leg theorem, it states that "the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the two triangles are congruent."

Learn more about the postulates of the HL theorem here:

brainly.com/question/25922842

4 0
3 years ago
A boy can swim 3.0 meter a second in still water while trying to swim directly across a river from west to east, he is pulled by
lana66690 [7]

Answer:

Angle: 48.19^o

Explanation:

<u>Two-Dimension Motion</u>

When the object is moving in one plane, the velocity, acceleration, and displacement are vectors. Apart from the magnitudes, we also need to find the direction, often expressed as an angle respect to some reference.

Our boy can swim at 3 m/s from west to east in still water and the river he's attempting to cross interacts with him at 2 m/s southwards. The boy will move east and south and will reach the other shore at a certain distance to the south from where he started. It happens because there is a vertical component of his velocity that is not compensated.

To compensate for the vertical component of the boy's speed, he only has to swim at a certain angle east of the north (respect to the shoreline). The goal is to make the boy's y component of his velocity equal to the velocity of the river. The vertical component of the boy's velocity is

v_b\ cos\alpha

where v_b is the speed of the boy in still water and \alpha is the angle respect to the shoreline. If the river flows at speed v_s, we now set

v_b\ cos\alpha=v_s

\displaystyle cos\alpha=\frac{v_s}{v_b}=\frac{2}{3}

\alpha=48.19^o

8 0
3 years ago
2 Points
Mademuasel [1]

According to Newton's Second Law of Motion :

The Force acting on an Object is equal to Product of Mass of the Object and Acceleration produced due to the Force.

:\implies  Force acting = Mass of the Object × Acceleration

Given : Force = 50 newton and Mass of the Object = 10 kg

Substituting the respective values in the Formula, we get :

:\implies  50 N = 10 kg × Acceleration

:\implies \mathsf{Acceleration = \dfrac{50\;N}{10\;kg}}

:\implies Acceleration of the Object = 5 m/s²

4 0
4 years ago
You push a 1.30 kg physics book 2.80 m along a horizontal tabletop with a horizontal push of 1.55 N while the opposing force of
Rzqust [24]

Answer:

<h2>3.36J</h2>

Explanation:

Step one:

given data

mass m= 1.3kg

distance moved s= 2.8m

opposing frictional force= 0.34N

assume g= 9.81m/s^2

we know that work done= force *distance moved

1. work done to push the book= 1.55*2.8=4.34J

2. Work against friction = force of friction x distance

                                       = 0.34*2.8=0.952J

Step two:

the work done on the book is the net work, which is

Network done= work done to push the book- Work against friction

Network done= 4.32-0.952=3.36J

<u>Therefore the work of the 1.55N 3.36J</u>

4 0
3 years ago
What do these letters stand for<br> P=mv
victus00 [196]

Answer:

The equation for momentum of a piece of matter.

In either case, the momentum would be less than a linebacker hitting you at full speed. The equation for momentum is written: p = mv where p stands for momentum. That is, mass times velocity equals momentum.

Explanation:

Hope This Helps

Have A Great Day

4 0
2 years ago
Other questions:
  • What is the formula for Impedance for circuit with R, C, and L?
    13·1 answer
  • A 2.0 kilogram cart moving due east at 6.0 meters per second collides with a 3.0 kilogram cart moving due west. the carts stick
    6·1 answer
  • Between a piece of paper and a rock, which will fall the fastest and why?
    6·1 answer
  • 2.85 A police car is traveling at a velocity of 18.0 m/s due north, when a car zooms by at a constant velocity of 42.0 m/s due n
    11·1 answer
  • The sound waves a bat releases hit an object and are_____ back to the bat.
    14·2 answers
  • The pilot of an airplane notes that the compass indicates a heading due west. the airplane's speed relative to the air is 130 km
    8·1 answer
  • The half-life of a certain isotope is 12 years. How much of a 600 g sample will remain after 36 years?
    10·1 answer
  • Two identical tiny spheres of mass m =2g and charge q hang from a non-conducting strings, each of length L = 10cm. At equilibriu
    14·1 answer
  • A person pushes on a 57-kg refrigerator with a horizontal force of 267 N; the - sign indicates that the force points in the +x d
    5·1 answer
  • A pot of water is heated on an electric stove top and begins to boil. Which
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!