Convex lenses when placed in the air, will cause rays of light (parallel to the central axis) to converge.
Converging lenses, commonly referred to as convex lenses, have thicker centers and narrower upper and lower margins. The edges are outwardly curled. This lens has the ability to concentrate a beam of parallel light rays coming from the outside onto a spot on the opposite side of the lens.
The image created is referred to be a genuine image when it is inverted relative to the object. On a screen, this kind of image can be recorded. When the object is positioned at a point farther than one focal length from the lens, a converging lens creates a true image.
A virtual image is one that cannot be produced on a screen and is formed when the image is upright in relation to the object. When an item is positioned within one focal length of a converging lens, a virtual image is created. It creates an enlarged image of the object on the same side of the lens as the image. It serves as a magnifier.
Learn more about the convex lens here:
brainly.com/question/12847657
#SPJ4
Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad
Answer:
B. Both electric fields and forces ...
Explanation:
Answer:


Explanation:
Wave 1, 
Wave 2, 
Wave 3, 
Wave 4, 
The general equation of travelling wave is given by :

The value of
will remain the same if we take phase difference into account.
For first wave,



For second wave,



For the third wave,



For the fourth wave,



It is clear from above calculations that waves 1 and 3 have same time period. Also, wave 2 and 4 have same time period. Hence, this is the required solution.