Answer:
60m
Explanation:
According to one of the equation of motions, v² = u²+2as where;
S is the distance
u is the initial velocity
v is the final velocity
a is the acceleration
Since the arrow is shot upwards, the body will experience a negative acceleration due to gravity i.e a = -g
Therefore our equation will become;
v² = u² - 2gS
Given u = 40m/s, g = 10m/s², S = 75m
Substituting to get the final velocity of the arrow we will have;
v² = 40²-2(10)(75)
v² = 1600 - 1500
v² = 100
v = √100
v = 10m/s
Total distance traveled is speed of the object × time taken
Total distance traveled = 10 × 6
= 60m
The arrow has therefore traveled 60m after 6seconds
Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
Al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
Explanation:
Dado que una barra de aluminio que está a 78 grados centígrados entra en contacto con una barra de cobre de la misma longitud y área que esta a 28 grados centígrados, y posteriormente se lleva acabo la transferencia de energía entre ambas barras llegando a su equilibrio térmico, para determinar la temperatura a la que ambas barras llegarán se debe realizar el siguiente cálculo:
(78 + 28) / 2 = X
106 / 2 = X
53 = X
Por lo tanto, al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
The answer to your question is OPTION B