Answer:
M = 5.882 10²³ kg
Explanation:
Let's use Newton's second law to analyze the satellite orbit around Mars.
F = m a
force is universal attraction and acceleration is centripetal
a = v²/ R
the modulus of velocity in a circular orbit is constant
v= d/T
the distance of the cicule is
d =2pi R
a = 2pi R/T
we substitute
- G m M / R² = m (
)
G M =
M = 
the distance R is the distance from the center of the planet Mars to the center of the satellite Deimos
R = 23460 km = 2.3460 10⁷ m
the period of the orbit is
T = 1,263 days = 1,263 day (24 h / 1 day) (3600s / h)
T = 1.0912 10⁵ s
let's calculate
M =
M = 509.73418 10²¹ /8.66640 10⁻¹
M = 58.817 10²² kg
M = 5.882 10²³ kg
Answer:
The work done to lift the counterweight equals the potential energy acquired
Explanation:
since this is vertically applied force on the counterweight, and the distance the force is displacing the counterweight is in the same direction as the applied force, it equals the gained potential energy
The sailboat is about 0.83m/sec (rounded to the nearest tenth).
To find speed, you would calculate distance over time.
100 meters/120 seconds = 0.83 meters per second
Answer:
Explanation:
a )
one kg of coal gives energy of 27 x 10⁶ J
75 kg of coal gives energy of 27 x 10⁶ x 75 J
So rate which energy is coming out of coal per second
= 27 x 10⁶ x 75 J
= 2025 x 10⁶ J /s
2025 million watts .
b ) energy output = 800 million watts
efficiency = (800 / 2025) x 100
= 39.5 % .