The particle has constant acceleration according to

Its velocity at time
is



Then the particle has position at time
according to


At at the point (3, 6, 9), i.e. when
, it has speed 8, so that

We know that at some time
, the particle is at the point (5, 2, 7), which tells us

and in particular we see that

and

Then



That is, there are two possible initial velocities for which the particle can travel between (3, 6, 9) and (5, 2, 7) with the given acceleration vector and given that it starts with a speed of 8. Then there are two possible solutions for its position vector; one of them is

Answer:
we could use the formula, v=u+at,
65=25+a (10), a=4 , since the motion is declerating we have a=-4 m/s2
Answer:
heterotrophs
Explanation:
According to the parameters established by biology, all living beings that require others to feed themselves are considered heterotrophs, that is, they are not able to produce their food within their organism but rather they must consume elements of nature already constituted as food, already synthesized by other organisms. Among the most prominent heterotrophs, all animals, bacteria and humans stand out.
The term heterotroph comes from the Greek, language in which the prefix hetero means different and trophies means food. In this way, the heterotroph is one that feeds on elements other than one, which takes elements from nature, from the surrounding space to feed. While autotrophic beings have the ability to synthesize inorganic elements such as light, water, carbon dioxide and convert them into food; Heterotrophic beings do not have that capacity, so they must consume plants (in the case that they are herbivores) or animals that have already consumed those plants (that is, in the case that they are carnivorous). In other words, animals and humans always need to feed on other living beings, they could never do so only from inorganic elements such as water.
Answer:
SI derived units
Other quantities, called derived quantities, are defined in terms of the seven base quantities via a system of quantity equations. The SI derived units for these derived quantities are obtained from these equations and the seven SI base units.
Explanation:
Hope this helps :D