Answer:
The magnitude of the net electric field is:

Explanation:
The electric field due to q1 is a vertical positive vector toward q1 (we will call it E1).
On the other hand, the electric field due to q2 is a horizontal positive vector toward q2(We will call it E2).
Knowing this, the <u>magnitude of the net electric</u> field will be the<u> E1 + E2. </u>
Let's find first E1 and E2.
The electric field equation is given by:

Where:
- k is the Coulomb constant (k = 9*10^{9} Nm²/C²)
- q1 is the first charge
- d1 is the distance from q1 to P


And E2 will be:



Finally, we need to use the Pythagoras theorem to find the magnitude of the net electric field.



I hope it helps you!
The sphere has a constant potential. It is the electric field.

In the sphere, then

Outside the sphere, then

The elements of the electric field include

Which becomes,

<h3>
In a consistent electric field, is force constant?</h3>
Similar to an ordinary object in the uniform gravitational field near the Earth's surface, a charged item in a uniform electric field experiences a constant force and consequently experiences a uniform acceleration. The vector cross product of p and E determines the torque's direction.
If the charge is positive, the force either moves in the same direction as E or in the opposite direction (if charge is negative).
A torque is experienced by an electric dipole (p) in an even electric field (E). The vector cross product of p and E determines the torque's direction.
To learn more about uniform electric field, visit
brainly.com/question/17426130
#SPJ4
One of the leading causes of hearing impairment that's due to damage
of the ear machinery is prolonged exposure to loud noise or loud music,
which damage the tiny hair cells that stimulate nerve endings in the inner ear.
Trust me.
Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.