Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>
Answer:
See, the string is made of nickel and steel (iron+carbon), materials that are ferromagnetic. That is, a magnet attracts guitar strings. When this ferromagnetic metal vibrates in the magnetic field of the pickup, that disturbs the red field lines which also cross through the coil (not shown).
Explanation:
Answer: Velocity...Distance
Explanation: Velocity is a vector quantity as it has both magnitude and direction
Distance is a scalar quantity as it has only magnitude and no direction
hope this helped...
Answer:
Its slowing down
Explanation:
I just took the test for it