
Here's a explanation!
Let's solve your equation step-by-step.


Step 1: Multiply both sides by x.


(Divide both sides by 4).


Take the root.
ANSWER!

Hopefully, this helps you!!

A compound has a definite ratio of components
2nd class leaver refers to such leaver in which load lies between effort and fulcrum.In a nut cracker too load is in between effort and fulcrum.Thus, nut cracker is a 2nd class leaver.......
Explanation:
Substances become neutral at the number 7 because at this point, the acid and Base are equal and becomes neutralized
Answer:

Explanation:
From the question we are told that:
Period 
Trial 1
Spring constant 
Period 
Mass 
Trial 2
Period 
Generally the equation for Spring Constant is mathematically given by
\mu=\frac{4 \pi^2 M}{T^2}
Since

Therefore



