<span>hair follicle
should be your answer</span>
Answer:
In a coiled spring, the particles of the medium vibrate to and fro about their mean positions at an angle of
A. 0° to the direction of propagation of wave
Explanation:
The waveform of a coiled spring is a longitudinal wave, which is made up of vibrations of the spring which are in the same direction as the direction of the wave's advancement
As the coiled spring experiences a compression force and is then released, it experiences a sequential movement of the wave of the compression that extends the length of the coiled spring which is then followed by a stretched section of the coiled spring in a repeatedly such that the direction of vibration of particles of the coiled is parallel to direction of motion of the wave
From which we have that the angle between the direction of vibration of the particles of the coiled spring and the direction of propagation of the wave is 0°.
Answer:
Bob's angular speed is the same as that of lily
Explanation:
Because for a carousel the angular speed remains the same since velocity at center and edge are the same
Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2
Answer: 3 radians/meter.
Explanation:
The general sinusoidal function will be something like:
y = A*sin(k*x - ω*t) + C
Where:
A is the amplitude.
k is the wave number.
x is the spatial variable
ω is the angular frequency
t is the time variable.
C is the mid-value.
The rule that we can use to solve this problem, is that the argument of the sin( ) function must be in radians (or in degrees)
Then if x is in meters, the wave-number must be in radians/meters, so when these numbers multiply the "meters" part is canceled.
Then for the case of the function:
y(x,t) = 0.1 sin(3x + 10t)
Where x is in meters, the units of the wave number (the 3) must be in radians/meters. Then the angular wave number is 3 radians/meter.