<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.
Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.
Velocity is displacement/time
(Displacement is the overall change in distance)
So you’ll want to divide 200 by 25, which should give you:
8 m/s
Here in nuclear reaction we can say that sum of neutrons and protons in reactant side and product side will be same always
Here mass number on the product side is given to us
so sum of mass number is given as

now on the reactant side also the number must be same

now we will have


Now number of protons on product side is given as

now we also know that atomic number of Fe is 26
so now we will have



now the equation is given as
