Answer:
A star with 15 solar masses is too big to be a main-sequence star.
Answer:
False
Explanation:
A white dwarf star that is easy to locate and see with small telescopes.
Answer:
123.30 m
Explanation:
Given
Speed, u = 22 m/s
acceleration, a = 1.40 m/s²
time, t = 7.30 s
From equation of motion,
v = u + at
where,
v is the final velocity
u is the initial velocity
a is the acceleration
t is time
V = at + U
using equation v - u = at to get line equation for the graph of the motion of the train on the incline plane
where m is the slope
Comparing equation (1) and (2)
![V = V_{x}](https://tex.z-dn.net/?f=V%20%3D%20V_%7Bx%7D)
a = m
Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.
a = - 1.40 m/s²
Sunstituting a = - 1.40 m/s² and u = 22 m/s
![V_{x} = -10.22 + 22](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3D%20-10.22%20%2B%2022)
![V_{x} = 11. 78 m/s](https://tex.z-dn.net/?f=V_%7Bx%7D%20%3D%2011.%2078%20m%2Fs)
The speed of the train at 7.30 s is 11.78 m/s.
The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.
Area of triangle + Area of rectangle
![[\frac{1}{2} * (22 - 11.78) * (7.30)] + [(11.78 - 0) * (7.30)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%2822%20-%2011.78%29%20%2A%20%287.30%29%5D%20%20%2B%20%5B%2811.78%20-%200%29%20%2A%20%287.30%29%5D)
= 37.303 + 85.994
= 123. 297 m
≈ 123. 30 m
Answer:
λ = 623.2 nm
Explanation:
We are given;
separation distance; d = 0.195 mm = 0.195 × 10^(-3) m
interference pattern distance; D = 4.85 m
Width of two adjacent bright interference; w = 1.55 cm = 1.55 × 10^(-2) m
Formula for fringe width is given as;
w = λD/d
Where λ is wavelength
Thus;
λ = dw/D
λ = (0.195 × 10^(-3) × 1.55 × 10^(-2))/4.85
λ = 0.0000006232 m
Converting to nm gives;
λ = 623.2 nm