The ratio of output force to the input force is generally the mechanical advantage of the machine.
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer:
250 N
433 N
Explanation:
N = Normal force by the surface of the inclined plane
W = Weight of the block = 500 N
f = static frictional force acting on the block
Parallel to incline, force equation is given as
f = W Sin30
f = (500) Sin30
f = 250 N
Perpendicular to incline force equation is given
N = W Cos30
N = (500) Cos30
N = 433 N
Answer:
17.64 km/h
Explanation:
mass of car, m = 1000 kg
Kinetic energy of car, K = 1.2 x 10^4 J
Let the speed of car is v.
Use the formula for kinetic energy.

By substituting the values

v = 4.9 m/s
Now convert metre per second into km / h
We know that
1 km = 1000 m
1 h = 3600 second
So, 
v = 17.64 km/h
Thus, the reading of speedometer is 17.64 km/h.