Answer:
0.56L
Explanation:
This question requires the Ideal Gas Law:
where P is the pressure of the gas, V is the volume of the gas, n is the number of moles of the gas, R is the Ideal Gas constant, and T is the Temperature of the gas.
Since all of the answer choices are given in units of Liters, it will be convenient to use a value for R that contains "Liters" in its units:
Since the conditions are stated to be STP, we must remember that STP is Standard Temperature Pressure, which means
and 
Lastly, we must calculate the number of moles of
there are. Given 0.80g of
, we will need to convert with the molar mass of
. Noting that there are 2 oxygen atoms, we find the atomic mass of O from the periodic table (16g/mol) and multiply by 2: 
Thus, 
Isolating V in the Ideal Gas Law:


...substituting the known values, and simplifying...


So, 0.80g of
would occupy 0.56L at STP.
Answer:
<u>[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2</u>
Explanation:
2H2S(g)⇋2H2(g)+S2(g)2H2S(g)⇋2H2(g)+S2(g)
The equilibrium constant expression in terms of concentrations is:
Kc=<u>[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2</u><u>.</u>
Explanation:
As the charge of all electrons are equal, the repulsive force exerted by each of them is also going to be equal. So, as K has more electrons repulsing its valence electron than Na, it has greater electron shielding.
Chloroacetic acid is stronger than acetic acid because of the electron-withdrawing effect of chlorine. This effect is caused by the electronegativity.
Answer:
0.55 atm
Explanation:
First of all, we need to calculate the number of moles corresponding to 1.00 g of carbon dioxide. This is given by

where
m = 1.00 g is the mass of the gas
Mm = 44.0 g/mol is the molar mass of the gas
Substituting,

Now we can find the pressure of the gas by using the ideal gas law:

where
p is the gas pressure
V = 1.00 L is the volume
n = 0.0227 mol is the number of moles
R = 0.082 L/(atm K mol) is the gas constant
T = 25.0 C + 273 = 298 K is the temperature of the gas
Solving the formula for p, we find
