Answer:
true
downstream to the riverbed. However, the most common mechanism to produce older rocks on top of younger is by thrust faulting. Thrust faults form where rocks are being compressed, usually by plate tectonic mechanisms. Thrust faults rip up older strata and pile it on top of younger rocks.
Explanation:
Chemical properties of elements are primarily determined by the electrons but not by neutrons. Therefore, the isotopes of the same element have similar chemical behavior. (a) The atomic number is 17, so there are 17 protons and 17 electrons. The mass number is 35, so there are 18 (=35-17) neutrons. Hope this helps. :)
Answer : The final pressure will be, 666.2 mmHg
Explanation :
Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

or,

where,
= initial pressure = 790 mmHg
= final pressure = ?
= initial volume = 101.2 mL
= final volume = 120 mL
Now put all the given values in the above equation, we get:


Therefore, the final pressure will be, 666.2 mmHg
Answer:
10.6 g CO₂
Explanation:
You have not been given a limiting reagent. Therefore, to find the maximum amount of CO₂, you need to convert the masses of both reactants to CO₂. The smaller amount of CO₂ produced will be the accurate amount. This is because that amount is all the corresponding reactant can produce before it runs out.
To find the mass of CO₂, you need to (1) convert grams C₂H₂/O₂ to moles (via molar mass), then (2) convert moles C₂H₂/O₂ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams (via molar mass). *I had to guess the chemical reaction because the reaction coefficients are necessary in calculating the mass of CO₂.*
C₂H₂ + O₂ ----> 2 CO₂ + H₂
9.31 g C₂H₂ 1 mole 2 moles CO₂ 44.0095 g
------------------ x ------------------- x ---------------------- x ------------------- =
26.0373 g 1 mole C₂H₂ 1 mole
= 31.5 g CO₂
3.8 g O₂ 1 mole 2 moles CO₂ 44.0095 g
------------- x -------------------- x ---------------------- x -------------------- =
31.9988 g 1 mole O₂ 1 mole
= 10.6 g CO₂
10.6 g CO₂ is the maximum amount of CO₂ that can be produced. In other words, the entire 3.8 g O₂ will be used up in the reaction before all of the 9.31 g C₂H₂ will be used.