The period of the wave is determined as 0.083 seconds.
<h3>What is period of a wave?</h3>
The period of a wave is the time taken by a particle of the medium to complete one vibration.
<h3>Period of the wave</h3>
The period of the wave is calculated as follows;
T = 1/f
where;
- T is the period of the wave
- f is frequency of the wave
T = 1/12
T = 0.083 seconds
Thus, the period of the wave is determined as 0.083 seconds.
Learn more about period of a wave here: brainly.com/question/18818486
#SPJ4
It would be 4 atm, because the way to figure out the final pressure is that (P1)(V1)=(P2)(V2)
meaning that the original pressure x original volume is equal to the final pressure x final volume. This gas law is called Boyle's law if you'd like to learn more about it.
But (1 atm)(40 mL)=(4 atm)(10 mL)
So it would be the second choice.
The answer is D using the work formula
W= F•d but if it was against gravity, it would be 0 if gravity is exerting the same amount, I would pick D using the formula, but I'm not so sure sorry
Answer:
The inductor contains
loops
Explanation:
From the question we are told that
The capacitance of the capacitor is 
The resonance frequency is 
The diameter is 
The of the air-core inductor is 
The permeability of free space is 
Generally the inductance of this air-core inductor is mathematically represented as

This inductance can also be mathematically represented as

Where
is the angular speed mathematically given as

So

Now equating the both formulas for inductance

making N the subject of the formula


Substituting value
loops