Answer:
The minimum speed must the car must be 13.13 m/s.
Explanation:
The radius of the loop is 17.6 m. We need to find the minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top.
We know that, mg be the weight of car and rider, which is equal to the centripetal force.

So, the minimum speed must the car must be 13.13 m/s.
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T


Answer:
In a positive ion, the number of protons is larger than the number of electrons.
In a negative ion, the number of protons is smaller than the number of electrons.
Explanation:
Each proton carries a positive charge of one unit.
Each elec in tron carries a negative charge of one unit.
In an atom, there are as many protons as electrons. Hence, they are neutral.
However, in a positive ion, there are less negative charge than positive charge. Hence the net charge is positive. That also means that there are fewer negatively-charged electrons than positively-charged protons.
Similarly, in a negative ion, there are more negative charge than positive charge. Hence the net charge is negative. That also means that there are more negatively-charged electrons than positively-charged protons.
No, gravity does not have mass, it behaves like a particle without mass