The kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
<h3>What is Kinetic Energy?</h3>
Kinetic energy is simply a form of energy a particle or object possesses due to its motion.
It is expressed as;
K = (1/2)mv²
Where m is mass of the object and v is its velocity.
Given that;
- For the first case, velocity v = 16m/s
- For the second case, velocity = 8m/s
- Let the mass of the car be m
For the first case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (16m/s)²
K = (1/2) × m × 256m²/s²
K = mass × 128m²/s²
For the second case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (8m/s)²
K = (1/2) × m × 64m²/s²
K = mass × 32m²/s²
Comparing the kinetic energy of the car with the same mass but different velocity, we can see that the kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
Learn more about kinetic energy here: brainly.com/question/12669551
#SPJ1
It's important because you have to know when to make it go faster or else you might not be able to go upside down or in a circle
Answer: The focal length of the cornea-lens system in his eye must be LESS THAN the distance between the front and back of his eye.
Explanation:
The human eye the front part of the eye is the CORNEA. This is the tough white transparent part of the eye that helps in the refraction of light rays. While the backside of the eye is the RETINA. This is the part of the eye when images are focused.
When a normal eye is at rest, parallel rays from a distant object are focused on the retina. The ability of the eye - lens to focus points at different distances on the retina is known as accomodation. The adjustment of the eye lens to focus objects of varying distances is brought about by the ciliary muscles. The have the ability to change the shape of the eye which leads to change in focal length.
When a person with normal vision looks at a distant object at infinity, the lens brings parallel rays to focus on the retina. Thus, the furthest point which the eye can see distinctly is called the far point of the eye and it's infinity for a normal eye. But Joe was able to focus his eye on the tree, meaning that the tree was within his near point. This is the nearest point at which an object is clearly seen. Therefore, when the effective focal length of the cornea-lens system changes, it changes the location of the image of any object in one's field of view.
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>
Answer:
539.5°
Explanation:
33.3 revolutions per minute
1 revolution = 360°
1 minute = 60 seconds
hence
33.3 revs ----> 1 minute = 60 seconds
X revs -----------> 2.70 seconds
X = (33.3 x 2.7)÷60 = 1.4985 revolutions in 2.70 seconds
1.4985 revolutions = 1.4985 x 360 = 539.46
which is approximately 539.5°