Displacement = (straight-line distance between the start point and end point) .
Since the road east is perpendicular to the road north,
the car drove two legs of a right triangle, and the magnitude
of its final displacement is the hypotenuse of the triangle.
Length of the hypotenuse = √ (215² + 45²)
= √ (46,225 + 2,025)
= √ 48,250
= 219.7 miles .
Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
The glandular epithelial tissues make up the liver.
To stop the car it would be 100m because if the car is going to 65km/h then it would still be 100km/h
Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J