1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antiseptic1488 [7]
4 years ago
14

A black, totally absorbing piece of cardboard of area a = 2.1 cm2 intercepts light with an intensity of 8.8 w/m2 from a camera s

trobe light. what radiation pressure is produced on the cardboard by the light?
Physics
1 answer:
PolarNik [594]4 years ago
8 0

Answer:

The value of radiation pressure is 2.933 \times 10^{-8} Pa

Explanation:

Given:

Intensity I = 8.8 \frac{W}{m^{2} }

Area of piece A = 2.1 \times 10^{-4} m^{2}

From the formula of radiation pressure in terms of intensity,

   P = \frac{I}{c}

Where P = radiation pressure, c = speed of light

We know value of speed of light,

 c = 3 \times 10^{8} \frac{m}{s}

Put all values in above equation,

  P = \frac{8.8}{3 \times 10^{8} }

  P = 2.933 \times 10^{-8} Pa

Therefore, the value of radiation pressure is 2.933 \times 10^{-8} Pa

You might be interested in
the deflection angle of the laser beam as it exits the prism is 22. 6º. If the prism had been made of glass instead of polystyre
inessss [21]
Thirty three degrees
4 0
2 years ago
I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air.
drek231 [11]

Answer:

Explanation:

I am sitting on a train car traveling horizontally at a constant speed of 50 m/s. I throw a ball straight up into the air. Before , the ball gets separated from my hand , both me the ball will be moving with velocity of 50 m /s in horizontal direction .

As soon as ball is separated from the hand , it acquires addition velocity in upward direction and acceleration in downward direction . This will give relative velocity to the ball with respect to me . So I will see the ball going in upward direction under  gravitational acceleration . It appears as if I am sitting at rest and ball is going in upward direction under deceleration . My motion at 50 m/s will have no effect on the motion of ball in upward direction , according to first law of Newton . It is so because ball too will be moving in forward direction with the same speed which will not be visible to me because I too am moving with the same speed.

If I  am  sitting at rest at home and I threw a ball straight up into the air , I will have the same experience of seeing ball going in similar way as described above.

8 0
3 years ago
An ideal gas is allowed to expand isothermally from 2.00 l at 5.00 atm in two steps:
Burka [1]

Heat added to the gas = Q = 743 Joules

Work done on the gas = W = -743 Joules

\texttt{ }

<h3>Further explanation</h3>

The Ideal Gas Law that needs to be recalled is:

\large {\boxed {PV = nRT} }

<em>P = Pressure (Pa)</em>

<em>V = Volume (m³)</em>

<em>n = number of moles (moles)</em>

<em>R = Gas Constant (8.314 J/mol K)</em>

<em>T = Absolute Temperature (K)</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

Initial volume of the gas = V₁ = 2.00 L

Initial pressure of the gas = P₁ = 5.00 atm

<u>Unknown:</u>

Work done on the gas = W = ?

Heat added to the gas = Q = ?

<u>Solution:</u>

<h3>Step A:</h3>

<em>Ideal gas is allowed to expand isothermally:</em>

P_1V_1 = P_2V_2

5.00 \times 2.00 = 3.00 \times V_2

V_2 = 10 \div 3

V_2 = 3\frac{1}{3} \texttt{ L}

\texttt{ }

<em>Next we will calculate the work done on the gas:</em>

W_A = -P_2(V_2 - V_1)

W_A = -3.00(3\frac{1}{3} - 2.00)

W_A = \boxed{-4 \texttt{ L.atm}}

\texttt{ }

<h3>Step B:</h3>

<em>Using the same method as above:</em>

P_2V_2 = P_3V_3

3.00 \times 3\frac{1}{3} = 2.00 \times V_3

V_3 = 10 \div 2

V_3 = 5 \texttt{ L}

\texttt{ }

<em>Next we will calculate the work done on the gas:</em>

W_B = -P_3(V_3 - V_2)

W_B = -2.00(5 - 3\frac{1}{3})

W_B = \boxed{-3\frac{1}{3} \texttt{ L.atm}}

\texttt{ }

<em>Finally we could calculate the total work done and heat added as follows:</em>

W = W_A + W_B

W = -4 + (-3\frac{1}{3})

W = -7\frac{1}{3} \texttt{ L.atm}

W = -7\frac{1}{3} \times 101.33 \texttt{ J}

\boxed{W \approx -743 \textt{ J}}

\texttt{ }

\Delta U = Q + W

0 = Q + (-743)

\boxed{Q = 743 \texttt{ J}}

\texttt{ }

<h3>Learn more</h3>
  • Minimum Coefficient of Static Friction : brainly.com/question/5884009
  • The Pressure In A Sealed Plastic Container : brainly.com/question/10209135
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Pressure

5 0
4 years ago
In a Hydrogen atom an electron rotates around a stationary proton in a circular orbit with an approximate radius of r =0.053nm.
leonid [27]

Answer:

(a): F_e = 8.202\times 10^{-8}\ \rm N.

(b): F_g = 3.6125\times 10^{-47}\ \rm N.

(c): \dfrac{F_e}{F_g}=2.27\times 10^{39}.

Explanation:

Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053\times 10^{-9} m.

Part (a):

According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges q_1 and q_2 respectively is given by

F_e = \dfrac{k|q_1||q_2|}{r^2}

where,

  • k = Coulomb's constant = 9\times 10^9\ \rm Nm^2/C^2.
  • r = distance of separation between the charges.

For the given system,

The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, q_1 = +1.6\times 10^{-19}\ C.

The charge on the electron, q_2 = -1.6\times 10^{-19}\ C.

These two are separated by the distance, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

F_e = \dfrac{(9\times 10^9)\times |+1.6\times 10^{-19}|\times |-1.6\times 10^{-19}|}{(0.053\times 10^{-9})^2}=8.202\times 10^{-8}\ \rm N.

Part (b):

The gravitational force of attraction between two objects of masses m_1 and m_1 respectively is given by

F_g = \dfrac{Gm_1m_2}{r^2}.

where,

  • G = Universal Gravitational constant = 6.67\times 10^{-11}\ \rm Nm^2/kg^2.
  • r = distance of separation between the masses.

For the given system,

The mass of proton, m_1 = 1.67\times 10^{-27}\ kg.

The mass of the electron, m_2 = 9.11\times 10^{-31}\ kg.

Distance between the two, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

F_g = \dfrac{(6.67\times 10^{-11})\times (1.67\times 10^{-27})\times (9.11\times 10^{-31})}{(0.053\times 10^{-9})^2}=3.6125\times 10^{-47}\ \rm N.

The ratio \dfrac{F_e}{F_g}:

\dfrac{F_e}{F_g}=\dfrac{8.202\times 10^{-8}}{3.6125\times 10^{-47}}=2.27\times 10^{39}.

6 0
3 years ago
Monochromatic light is incident on a metal surface, and electrons are ejected. If the intensity of the light increases, what wil
drek231 [11]

Answer:The rate of ejection of photoelectrons will increase

Explanation:

If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.

4 0
3 years ago
Other questions:
  • 1. In Physics, we distinguish between wave motion and particle motion Wave motion
    10·1 answer
  • A physical pendulum in the form of a planar object moves in simple harmonic motion with a frequency of 0.290 Hz. The pendulum ha
    9·1 answer
  • What is the theory of punctuated equilibrium answers?
    15·2 answers
  • A 250-gram cart starts from rest and rolls down an inclined plane from a height of 0.541m. Determine its speed at the bottom of
    5·1 answer
  • Positively charged particle A.proton B.neutron C.electron
    13·2 answers
  • A car accelerates uniformly from rest to a final speed of 19 m/s in 10. seconds. How far does it travel during this period of ac
    8·1 answer
  • Which month has the longest day and shortest night?
    6·1 answer
  • A car starts from rest , then accelerates at 1.20 m/s^2 fo 7.00 s. It hits the brakes, slowing to a stop at a rate of -4.25 m/s^
    14·1 answer
  • A car has a speed of 10 m/s and a mass of 1500 kg. what is the momentum of the car ​
    10·1 answer
  • Answer me fast. Find velocity in Acceleration Time Graph.​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!