F(x)=-1/x
g(x)=√(3x-9)
Domain of (f/g)(x): ??
1We find out the domain of f(x):
f(x) is a rational function, therefore can take real values if the denominator is not ("0"), therefore the domain of f, will be all values excpet "0"
Domain of f: (-∞,0)U(0,+∞);
o
----------------------------------------------O-------------------------------------------
←-------- -∞ +∞ ----------→
g(x) is a radical square root function, therefore the radicand have to be greater than o equal to "0"
3x-9≥0
3x≥9
x≥3
3
.........................................................Ф--------------------------------
←--------- - ∞ +∞ -----------→
(f/g)(x) = (-1/x) / (√(3x-9)) is a rational function with a square root in the denominator,also the square root don´t take the value of "0";
Therefore:
3x-9>0
3x>9
x>3
The domain of the function (f/g)(x) only can take the values found in all three domains at once.
3
............................................................0---------------------------------
←--------- -∞ +∞-------------→
Answer: (3,+∞)
Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
Answer:
i have to see the question
Explanation:
Answer:
The correct answer is D
Explanation:
Many substances hold their molecules together in the liquid or solid bosom. This is due, in addition to the pressure and temperature conditions, by the forces of Van der Waals. These are still produced in nonpolar molecules by the movement of electrons through the molecules; in extremely short periods of time, their electrons "charge" towards one end of the molecule, producing small dipoles and keeping the molecules very close to each other.
355 volcanoes in the Philippines are inactive.
24 volcanoes are active