Gs*rs^2 = gm*rm^2
<span>rm = rs*√gs/gm </span>
<span>rm = 6370*√9.83/(9.83-0.009) = 6372.92 </span>
<span>mountain observatory is placed at an altitude worth 2920 m asl
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
3 820 885 N
Explanation:
Gravitational equation
F = G m1 m2 / r^2
G = gravitational constant = 6.6713 x 10^-11 m^3/kg-s^2
F = 6.6713 x 10^-11 * 4.41 x 10^5 * 5.97 x 10^24 / ( 6.78x 10^6)^2
= 3820885 .3 N
I believe gamma decay but i may be wrong
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
It is like that, except most nails are steel or stainless steel, slowing to rusting process to about 5 years.