the answer is definitely A.
Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it
Explanation:
Given that,
The mass of rock, m = 2.35-kg
It was released from rest at a height of 21.4 m.
(a) The kinetic energy is given by :
As the rock was at rest initially, it means, its kinetic energy is equal to 0.
(b) The gravitational potential energy is given by :
It can be calculated as :
(c) The mechanical energy is equal to the sum of kinetic and potential energy such that,
M = 0 J + 492.84 J
M = 492.84 J
Hence, this is the required solution.
Answer:
205N
Explanation:
The net force (F) is the difference between the applied force() and the kinetic frictional force(). i.e
F = - -----------------(i)
Note that;
= μmg
Where;
μ = coefficient of kinetic friction
m = mass of the body
g = acceleration due to gravity = 10m/s²
Equation (i) then becomes;
F = - μmg -------------------(ii)
<em>Given from question;</em>
m = mass of motorcycle = 150kg
μ = 0.03
= 250N
Substitute these values into equation (ii) as follows;
F = 250 - (0.03 x 150 x 10)
F = 250 - (45)
F = 205N
Therefore, the net force applied to the motorcycle is 205N