There are 9 polyatomic ions so which one and the compound “Sn(NO2)2 is Tin(ll) Nitrite
        
                    
             
        
        
        
To calculate the new pressure, we can use Boyle’s law to relate these two scenarios (Boyle’s law is used because the temperature is assumed to remain constant). Boyle’s law is:
P1V1 = P2V2,
Where “P” is pressure and “V” is volume. The pressure and volume of the first scenario is 215 torr and 51 mL, respectively, and the second scenario has a volume of 18.5 L (18,500 mL) and the unknown pressure - let’s call that “x”. Plugging these into the equation:
(215 torr)(51 mL) =(“x” torr)(18,500 mL)
x = 0.593 torr
The final pressure exerted by the gas would be 0.593 torr.
Hope this helps!
        
             
        
        
        
1-pentyne consists of a carbon chain of 5 carbons one with a triple bond. 1-octyne is a carbon chain of 8 carbons with a triple bond at some point. It is known that the longer the carbon chain the higher the boiling point since more energy will be required to break the bonds between carbons. Based on this it is predicted that 1-octyne will have a higher boiling point than 1-pentyne.
        
                    
             
        
        
        
Answer:
When the pressure increases to 90.0 atm , the volume of the sample is 0.01467L
Explanation:
To answer the question, we note that
P₁ = 1.00 atm
V₁ = 1.32 L
P₂ = 90 atm.
According to Boyle's law, at constant temperature, the volume of gas is inversely proportional to its pressure
That is P₁V₁ = P₂V₂
Solving the above equation for V₂ we have
  that is V₂ = 
 = 
 or 0.01467L