Answer
× 10²³ molecules are in 41.8 g of sulfuric acid
Explanation
The first step is to convert 41.8 g of sulfuric acid to moles by dividing the mass of sulfuric acid by its molar mass.
Molar mass of sulfuric acid, H₂SO₄ = 98.079 g/mol

Finally, convert the moles of sulfuric acid to molecules using Avogadro's number.
Conversion factor: 1 mole of any substance = 6.022 × 10²³ molecules.
Therefore, 0.426187053 moles of sulfuric acid is equal

Thus, 2.57 × 10²³ molecules are in 41.8 g of sulfuric acid.
<u>Answer:</u> The specific heat of metal is 0.821 J/g°C
<u>Explanation:</u>
When metal is dipped in water, the amount of heat released by metal will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of metal = 30 g
= mass of water = 100 g
= final temperature = 25°C
= initial temperature of metal = 110°C
= initial temperature of water = 20.0°C
= specific heat of metal = ?
= specific heat of water = 4.186 J/g°C
Putting values in equation 1, we get:
![30\times c_1\times (25-110)=-[100\times 4.186\times (25-20)]](https://tex.z-dn.net/?f=30%5Ctimes%20c_1%5Ctimes%20%2825-110%29%3D-%5B100%5Ctimes%204.186%5Ctimes%20%2825-20%29%5D)

Hence, the specific heat of metal is 0.821 J/g°C
Answer: 1. Vinegar, used in the kitchen, is a liquid containing 3-6% acetic acid. It is used in pickles and in many food preparations.
2. Lemon and orange juice contains citric acid. Citric acid is used in the preparation of effervescent salts and as a food preservative.
3. Acids have been put to many uses in industry. Nitric acid and sulphuric acid are used in the manufacture of fertilizers, dyes, paints, drugs and explosives.
4. Sulphuric acid is used in batteries, which are used in cars, etc. Tannic acid is used in the manufacture of ink and leather.
5. Hydrochloric acid is used to make aqua regia, which is used to dissolve noble metals such as gold and platinum.
6. Sulphuric acid is used in manufacturing fertilizers such as super phosphate, ammonium sulpahte etc.
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of hydrogen = 16.7 g
Mass of oxygen = 15.4 g
Limiting reactant = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 16.7 g/ 2 g/mol
Number of moles = 8.35 mol
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 15.4 g/ 32 g/mol
Number of moles = 0.48 mol
Now we will compare the moles of both reactant with product,
H₂ : H₂O
2 : 2
8.35 : 8.35
O₂ : H₂O
1 : 2
0.48 : 2×0.48 = 0.96 mol
The number of moles of water produced by oxygen are less so it will limiting reactant.
C.) Action force unless it has potential/stored enerygy