1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
15

A 72.0-kg skydiver is falling at a terminal velocity of 79.0 m/s. Which equation should be used to calculate the diver’s kinetic

energy?
Physics
1 answer:
rodikova [14]3 years ago
4 0

Answer:

KE= 1/2 * mass * Velocity^2

Explanation:

1/2 * 72.0kg* 79^2 m/s = 224676 J

You might be interested in
Which statement does NOT describe redesign?
pantera1 [17]
D. It happens all the time
4 0
2 years ago
While a balloon is being filled, if the temperature of the air in the balloon decreases, what happens to its volume?
Ugo [173]
Why is it always balloons?
anyways so the balloon volume goes somewhere else when it shrinks because the balloon is losing air i think
4 0
3 years ago
Read 2 more answers
If Galileo drops a cannon ball from the 60 meter high) Leaning Tower of Pisa, how fast will it be moving when it hits the ground
viva [34]

Answer:

When the ball hits the ground, the velocity will be -34 m/s.

Explanation:

The height and velocity of the ball at any time can be calculated using the following equations:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the ball at time "t".

y0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).

v = velocity at time "t".

If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:

y = y0 + v0 · t + 1/2 · g · t²

0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²

0 = 60 m - 4.9 m/s² · t²

-60 m / -4.9 m/s² = t²

t = 3.5 s

Now, with this time, we can calculate the velocity of the ball when it reaches the ground:

v = v0 + g · t

v = 0 m/s - 9.8 m/s² · 3.5 s

v = -34 m/s

When the ball hits the ground, the velocity will be -34 m/s.

5 0
3 years ago
A torsion-bar spring consists of a prismatic bar, usually of round cross section, that is twisted at one end and held fast at th
ra1l [238]

Answer:

d₁ = 0.29 in

d₂ = 0.505 in

Explanation:

Given:

T = 1500 lbf in

L = 10 in

x = 0.5 L = 5 in

T_{1} =\frac{T(L-x)}{L} =\frac{1500*(10-5)}{10} =750lbfin

First case: T = T₁ + T₂

T₂ = T - T₁ = 1500 - 750 = 750 lbf in

If the shafts are in series:

θ = θ₁ + θ₂

θ = ((T₁ * L₁)/GJ) + ((T₂ * L₂)/GJ)

Second case: If d₁ ≠ d₂

θ = ((T₁ * L₁)/GJ₁) + ((T₂ * L₂)/GJ₂) = 0 (eq. 1)

t₁ = t₂

\frac{16T_{1} }{\pi d_{1}^{3}  } =\frac{16T_{2} }{\pi d_{2}^{3}  } (eq. 2)

T₁ + T₂ = 1500 (eq. 3)

θ₁ first case = θ₁ second case

Replacing:

\frac{750*5}{G(\frac{\pi }{32})*0.5^{4}  } =\frac{T_{1}*3.7 }{G(\frac{\pi }{32})*d_{1} ^{4}  }\\T_{1} =16216d_{1} ^{4}

The same way to θ₂:

\frac{750*5}{G(\frac{\pi }{32})*0.5^{4}  } =\frac{T_{2}*6.3 }{G(\frac{\pi }{32})*d_{2} ^{4}  } \\T_{2} =9523.8d_{2} ^{4}

From equation 2, we have:

d₁ = 0.587 * d₂

From equation 3, we have:

d₂ = 0.505 in

d₁ = 0.29 in

7 0
3 years ago
Which type of lever is exemplified by the flexing of the forearm by the biceps brachii muscle?
ira [324]

Answer:

a third class lever

Explanation:

The third class or interpower lever is a lever that enables fast and dynamic movements. It places the power between the resistance and the support, so the resistance arm is longer than the power.

It is the most frequent type of lever in the human body and as an example we can put the action of the brachial biceps in the flexion of the elbow, where the biceps is inserted in the forearm between the elbow that is behind and the resistance that would be displaced towards the hand by the weight of the load attached to the weight of the forearm.

A good range of movements is achieved although with less force and is the most frequent type of lever in human movement, although the same joint can form different types of lever depending on the type of movement performed .

8 0
3 years ago
Other questions:
  • A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 3 seconds, coasts for 2 s, and then slows down at a rate o
    14·1 answer
  • Use complete sentences to explain how global wind patterns such as the polar easterlies in the southern hemisphere would be impa
    12·2 answers
  • I need help on a it all please
    10·1 answer
  • In April 1974, Steve Prefontaine completed a 10 km race in a time of 27 min, 43.6 s. Suppose "Pre" was at the 8.13 km mark at a
    13·1 answer
  • Which of the following is the FINAL step in a forecasting​ system?
    15·1 answer
  • The kinetic energy of a moving object is E=12mv2. A 61 kg runner is moving at 10kmh. However, her speedometer is only accurate t
    15·1 answer
  • Which graph shows the correct relationship between kinetic and speed
    8·2 answers
  • True or false question scientists can predict when an earthquake will occur
    7·1 answer
  • An unstoppable object is heading right toward an unmovable object. What's going to happen?
    5·1 answer
  • Even if all stars were the same distance from Earth, their absolute magnitude and
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!