D. It happens all the time
Why is it always balloons?
anyways so the balloon volume goes somewhere else when it shrinks because the balloon is losing air i think
Answer:
When the ball hits the ground, the velocity will be -34 m/s.
Explanation:
The height and velocity of the ball at any time can be calculated using the following equations:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height of the ball at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity. (-9.8 m/s² considering the upward direction as positive).
v = velocity at time "t".
If we place the origin of the frame of reference on the ground, when the ball hits the ground its height will be 0. Then using the equation of height, we can calculate the time it takes the ball to reach the ground:
y = y0 + v0 · t + 1/2 · g · t²
0 = 60 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 = 60 m - 4.9 m/s² · t²
-60 m / -4.9 m/s² = t²
t = 3.5 s
Now, with this time, we can calculate the velocity of the ball when it reaches the ground:
v = v0 + g · t
v = 0 m/s - 9.8 m/s² · 3.5 s
v = -34 m/s
When the ball hits the ground, the velocity will be -34 m/s.
Answer:
d₁ = 0.29 in
d₂ = 0.505 in
Explanation:
Given:
T = 1500 lbf in
L = 10 in
x = 0.5 L = 5 in

First case: T = T₁ + T₂
T₂ = T - T₁ = 1500 - 750 = 750 lbf in
If the shafts are in series:
θ = θ₁ + θ₂
θ = ((T₁ * L₁)/GJ) + ((T₂ * L₂)/GJ)
Second case: If d₁ ≠ d₂
θ = ((T₁ * L₁)/GJ₁) + ((T₂ * L₂)/GJ₂) = 0 (eq. 1)
t₁ = t₂
(eq. 2)
T₁ + T₂ = 1500 (eq. 3)
θ₁ first case = θ₁ second case
Replacing:

The same way to θ₂:

From equation 2, we have:
d₁ = 0.587 * d₂
From equation 3, we have:
d₂ = 0.505 in
d₁ = 0.29 in
Answer:
a third class lever
Explanation:
The third class or interpower lever is a lever that enables fast and dynamic movements. It places the power between the resistance and the support, so the resistance arm is longer than the power.
It is the most frequent type of lever in the human body and as an example we can put the action of the brachial biceps in the flexion of the elbow, where the biceps is inserted in the forearm between the elbow that is behind and the resistance that would be displaced towards the hand by the weight of the load attached to the weight of the forearm.
A good range of movements is achieved although with less force and is the most frequent type of lever in human movement, although the same joint can form different types of lever depending on the type of movement performed
.