The power is 
Explanation:
First of all, we need to find the acceleration of the car, which is given by

where
v = 60 mph = 26.8 m/s is the final velocity
u = 0 is the initial velocity
t = 10.0 s is the time
Substituting,

Now we can find the mass of the car by using Newton's second law:

where
F = 5300 N is the force applied
m is the mass
is the acceleration
Solving for m,

Now we can use the work-energy theorem, which states that the work done is equal to the change in kinetic energy of the car, to find the work:

And substituting,

Finally, we can find the power output of the car:

where
W is the work
t = 10.0 s is the time elapsed
Substituting,

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
The answer is a rem sleep
A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".
Answer:
A. α = 94.4 rad/s
B. a = 28.32 m/s
C. N = 34N
D. α = 94.4 rad/s
a = 28.32 m/s
N = 44.4 N
Explanation:
part A:
using:
∑T = Iα
where T is the torque, I is the moment of inertia and α is the angular momentum.
firt we will find the moment of inertia I as:
I = 
Where M is the mass and R is the radius of the wheel, then:
I = 
I = 0.36 kg*m^2
Replacing on the initial equation and solving for α, we get::
∑T = Iα
Fr = Iα
34 N = 0.36α
α = 94.4 rad/s
part B
we need to use this equation :
a = αr
where a is the aceleration of the cord that has already been pulled off and r is the radius of the wheel, so replacing values, we get:
a = (94.4)(0.3 m)
a = 28.32 m/s
part C
Using the laws of newton, we know that:
N = T
where N is the force that the axle exerts on the wheel part and T is the tension of the cord
so:
N = 34N
part D
The anly answer that change is the answer of the part D, so, aplying laws of newton, it would be:
-Mg + N +T = 0
Then, solving for N, we get:
N = -T+Mg
N = -34 + (8 kg)(9.8)
N = 44.4 N
Answer:
a)3000ohm
b)4.44mA
Explanation:
a) we were given a Nine tree lights connected inparallel across 120-V potential difference, since the resistor are in parallel we use the expresion below
1/R(total)= 1/R₁ + 1/R₂ + 1/R₃ + 1/R₃ +.... 1/R₉
But according to ohm'law which can be expressed below
V=IR
R=V/I
R(total)= 120/0.36
= 333.33ohm
1/R(total)= 1/R₁ + 1/R₂ + 1/R₃ + 1/R₃ +.... 1/R₉
R₁=R₂ =R₃ =R₄= R₅=R₆=R₇=R₈=R₉
1/R(total)=9/R
1/333.33= 9/R
R= 3000ohm
Therefore, the resistance is 3000ohm
b)the bulbs were connected in series here, then for series connection we use below expression
R₁=R₂ =R₃ =R₄= R₅=R₆=R₇=R₈=R₉
R(total)=9R
= 9*3000
=27000ohm
I=VR
I=V/R
I= 120/27000
= 4.44*10⁻³A
4.44mA
Therefore, the current is 4.4mA