Silicon because it is abundant on Earth. Also, carbon and silicon are both building blocks of life.
Answer: -
71
Explanation: -
From the diagram, we see that volume goes from 70 to 75 in 5 markings.
Each marking is for 1.
It is the most accuracy possible as there is no smaller marking.
Significant figures expresses the required amount of accuracy.
Thus the volume indicated from the diagram is 71 .
Answer:
5.4 atm
Explanation:
P•V/T = P'•V'/T'
2.4•2.2/290 = P'•2/296
5.28/290 = P'/296 Multiply both sides by 296
1562.88/290 = P'
I'm = 5.4 atm
Answer:
Molar mass = 32.64 g / mol.
The density of gas is 1.3 × 10⁻³g/mL.
Explanation:
Given data:
Mass of sample = 2.35 g
Pressure = 1.05 atm
Volume = 1.85 L (1.85 × 1000 = 1850 ml)
Temperature = 55 °C (55+ 273.15 = 328.15 K)
Density = ?
Formula:
d = m/ v
The volume of flask would be the volume of gas.
d = 2.35 g / 1850 mL = 0.0013 g/mL or 1.3 × 10⁻³g/mL
The density of gas is 1.3 × 10⁻³g/mL.
Molar mass:
Now we will calculate the moles of a gas first in order to find the molar mass of a gas.
Formula:
PV =nRT
n = number of moles.
n = PV / RT
n = 1.05 atm × 1.85 L / 0.0821 atm. dm³. K⁻¹ . mol⁻¹ × 328.15 K
n = 1.9425 atm . L / 26.941115 atm . dm.³mol⁻¹
n = 0.072 mol
Now we will find the molar mass.
Number of moles = mass / molar mass
0.072 mol = 2.35 g / molar mass
Molar mass = 2.35 g / 0.072 mol
Molar mass = 32.64 g / mol