The atomic number in an element is usually how many protons the element has. For example, Hydrogen has a 1 on top of the H (on the periodic table), therefore, Hydrogen has 1 proton. Oxygen has an 8 on top of the O (on the periodic table) so therefore, Oxygen has 8 protons.
Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.
Answer:
8.8g of Al are necessaries
Explanation:
Based on the reaction, 2 moles of Al are required to produce 3 moles of hydrogen gas.
To solve this question we must find the moles of H2 in 11L at STP using PV = nRT. With these moles we can find the moles of Al required and its mass as follows:
<em>Moles H2:</em>
PV = nRT; PV/RT = n
<em>Where P is pressure = 1atm at STP; V is volume = 11L; R is gas constant = 0.082atmL/molK and T is absolute temperature = 273.15K at STP</em>
Replacing:
1atm*11L/0.082atmL/molK*273.15K = n
n = 0.491 moles of H2 must be produced
<em />
<em>Moles Al:</em>
0.491 moles of H2 * (2mol Al / 3mol H2) = 0.327moles of Al are required
<em />
<em>Mass Al -Molar mass: 26.98g/mol-:</em>
0.327moles of Al * (26.98g / mol) = 8.8g of Al are necessaries
Answer:
6 hours
Explanation:
If it is traveling at 50mph and needs to reah 300 miles, to figure this problem out you would want to divide 300 by 50 to get 6 hours. So it will take six hours until the car travels 300 miles
Hope this helps.
Answer:

Explanation:
Hello,
In this case, as the copper's heat loss is gained by the water, the following energetic relationship is:

Therefore the equilibrium temperature shows up as:

Thus, by knowing that water's heat capacity is 4.18J/g°C, one obtains:

Best regards.