Answer:
E = 12640.78 N/C
Explanation:
In order to calculate the electric field you can use the Gaussian theorem.
Thus, you have:

ФE: electric flux trough the Gaussian surface
Q: net charge inside the Gaussian surface
εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2
If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m
Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

Finally, you obtain for E:

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C
The kinetic energy of an object of mass m and velocity v is given by

Let's call

the initial speed of the car, so that its initial kinetic energy is

where m is the mass of the car.
The problem says that the car speeds up until its velocity is twice the original one, so

and by using the new velocity we can calculate the final kinetic energy of the car

so, if the velocity of the car is doubled, the new kinetic energy is 4 times the initial kinetic energy.
A) No, the equations presented above are the product of the derivation of position and velocity when the acceleration is constant.
The equations change to polynomial function of the second degree for the description of the acceleration when described as a function of time.
B) Yes, when the acceleration is zero it is concluded that the velocity is constant, therefore they could be used to describe the position as a function of the change in velocity.