Answer:
0
Explanation:
Forces with equal magnitudes and opposite directions cancel each other out, so the net force is 0.
Answer:
If resistance increases current decreases.
Explanation:
- Current is <em>inversely proportional</em> to the resistance.
- from the relation given below, we can clearly see the relation between current and resistance;
V=IR
I ∝ 1/R
This relation shows that when resistance increases,current decreases.
Answer:

Explanation:
Given that
Charge on ring 1 is q1 and radius is R.
Charge on ring 2 is q2 and radius is R.
Distance ,d= 3 R
So the total electric field at point P is given as follows
Given that distance from ring 1 is R




Answer:
it will have a stronger attraction force
Explanation:
<span>(6.0x10^-22, -1.40x10^-21, 0) kg*m/s
Momentum is a conserved quantity. The total momentum of the system before and after the interactions will not change. So, let's look at the momentum before the interaction.
(3.2x10^-21, 0, 0) kg*m/s and (0,0,0) kg*m/s
After the interaction
(2.6x10^-21, 1.40x10^-21, 0) kg*m/s
and the other proton has to have a momentum that when added to this momentum equal the original value. Since the y and z vectors were initially 0, all we need for the y and x vector values of the result is to negate them. The x vector value will be
3.2x10^-21 - 2.6x10^-21 = 0.6x10^21 = 6.0x10^-22. So the other proton will have a momentum of
(6.0x10^-22, -1.40x10^-21, 0) kg*m/s</span>