The acceleration of gravity on or near the Earth's surface is 9.8 m/s² downward.
Is that right ? I don't hear any objection, so I'll assume that it is.
That means that during every second that gravity is the only force on an object,
the object either gains 9.8m/s of downward speed, or it loses 9.8m/s of upward
speed. (The same thing.)
If the rock starts out going up at 14.2 m/s, and loses 9.8 m/s of upward speed
every second, it runs out of upward gas in (14.2/9.8) = <em>1.449 seconds</em> (rounded)
At that point, since it has no more upward speed, it can't go any higher. Right ?
(crickets . . .)
Answer:
The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
Explanation:
Given that,
Initial velocity u= 128 ft/sec
Equation of height
....(I)
(a). We need to calculate the maximum height
Firstly we need to calculate the time

From equation (I)




Now, for maximum height
Put the value of t in equation (I)


(b). The number of seconds it takes the object to hit the ground.
We know that, when the object reaches ground the height becomes zero




Hence, The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)