1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
13

When students work in a chemistry lab, the location of which item would be the most important for each student to know?

Physics
2 answers:
siniylev [52]3 years ago
7 0
Fire extinguisher and eye wash station? hope that helps
denis-greek [22]3 years ago
4 0

Answer: safety shower

Explanation: edge2020 answer

You might be interested in
For general projectile motion, which of the following best describes the horizontal component of a projectile's acceleration? As
malfutka [58]

Answer:

E ) The horizontal component of a projectile acceleration is zero.

Explanation:

In case of a projectile , force of gravity acts in vertically downward direction so acceleration will act in vertically downward direction . Its direction never changes during course of its journey. So horizontal component of acceleration will always be zero at all points of its journey.

7 0
3 years ago
An airplane is flying 340 km/hr at 12o east of north. the wind is blowing 40 km/hr at 34o south of east. what is the plane's act
jok3333 [9.3K]
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector  \hat{i}.
The positive y-axis = the northern direction, with unit vector \hat{j}.

The airplane flies at 340 km/h at 12° east of north. Its velocity vector is
\vec{v}_{1} = 340(sin(15^{o})\hat{i} + cos(15^{o})\hat{j} ) = 88\hat{i} + 328.4\hat{j}

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})

The plane's actual velocity is the vector sum of the two velocities. It is
\vec{v}=\vec{v}_{1}+\vec{v}_{2} = 121.1615\hat{i}+306.0473\hat{j}

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h

The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°

Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.
5 0
3 years ago
Which one of the following statements is true concerning the magnitude of the electric field at a point in space? It is a measur
IceJOKER [234]

Answer:

It is a measure of the electric force per unit charge on a test charge.

Explanation:

The magnitude of the electric field is defined as the force per charge on the test charge.

Since we define electric field as the force per charge, it will have the units of  force divided by the unit of charge. This implies that the SI unit of electric field is given as Newton/Coulomb (N/C).

5 0
3 years ago
Thermal energy transfers throughout the water in the beaker. Describe and explain how this happens?
ziro4ka [17]
The transfer of heat between the bottom surface of the beaker and water inside it is due to Convection phenomenon. When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along. ... The fluid above a hot surface expands, becomes less dense, and rises
7 0
3 years ago
A point charge q1 = 3.0 µC is at the origin and a point charge q2 = 6.0 µC is on the x axis at x = 10 m.
UkoKoshka [18]

Answer:

a) 1.6 mN  b) -1.6 mN  c) -1.6 mN  d) 1.6 mN

Explanation:

The electrostatic force between 2 point charges, obeys the Coulomb's Law, that can be expressed as follows:

F₁₂ = k*q₁*q₂/(r₁₂)² (in magnitude)

The direction of the force, is along the  line that joins the  charges (along the x axis) and as q₁ and q₂ are of the same sign, aims away from both charges.

a) So, for the force on q₂, we have:

F₁₂ = 9*18*10⁻⁵ N = 1.6 mN (positive as it is aiming in the positive x direction)

b) The force on q1, according to Newton's 3rd Law, is just equal and opposite to the one on q2:

F₂₁ = (-9*18*10⁻⁵) N = -1.6 mN (towards the negative x direction, away from q1)

c) If q₂ were -6.0 μC, the force will be the same in magnitude, but as now both charges have different signs, they wil attract each other, so the direction of the forces will be exactly the opposite to the first case:

F₁₂ = -1.6 mN (going towards the origin, where q₁ is located)

F₂₁ =  1.6 mN (going in the positive x direction, towards q₂)

6 0
4 years ago
Read 2 more answers
Other questions:
  • The table shows the potential energy and kinetic energy of a skier at two different positions on a hill.
    6·2 answers
  • Mia walks with a velocity of 1.3 m/s south. She does so while riding on a train that is traveling with a velocity of 4.6 m/s nor
    7·1 answer
  • Someone help me , is it qualitative or quantitative.
    11·1 answer
  • When your food in placed under a warming light in a fast food restaurant, which type of electromagnetic waves are most likely us
    13·2 answers
  • n an ecosystem, energy that flows to tertiary consumers ultimately originates from the sun. Please select the best answer from t
    14·2 answers
  • If 2000 kg cannon fires 2 kg projectile having muzzle velocity 200 m/s than the recoil speed of the cannon will be *
    5·1 answer
  • How many lobes are in the lungs
    12·1 answer
  • 32. Increasing the amplitude of a sound wave produces a
    12·1 answer
  • A mass is hanging from the end of a horizontal bar that pivots around an axis through its center, but it is being held stationar
    10·1 answer
  • A student drops a ball from a height of 97.0m. If the ball increases speed at a uniform rate of 10.0m/s^2, determine all unknown
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!