Answer:
The yield of the product in gram is 
Explanation:
Given that:
the molecular mass weight of the product = 96.2 g/mol
the molecular mass of the reagent (3S)-2,2,-dibromo-3,4-dimethylpentane is 257.997 g
given that the millimoles of the reagent = 2,7 millimoles = 
We know that:
Number of moles = mass/molar mass
Then:


mass = 0.697
Theoretical yield = (number of moles of the product/ number of moles of reactant) × 100
i.e
Theoretical yield = 
where;
and 
Theoretical yield = 
Given that the theoretical yield = 100%
Then:



where,
= derived weight of the product
the molecular mass of the derived product
the molecular mass of the reagent
= weight in a gram of the reagent



... to be called elements<span>. This lesson shows </span>you how to<span> predict the </span>numbers<span> of </span>neutrons, electrons, andprotons<span> of the isotopes they are likely to find in nature. (</span><span>cont.) ... What </span>kind<span> of </span>generalization can you make<span> about how the </span>number<span> of </span>protons<span> and </span>neutrons<span> are </span>related<span> to </span>each other<span> in the </span>elements<span>? Unit 1 • Investigation IV</span>
Answer:
C) ball rollinflown a hill
Explanation:
The question asks to identify the endothermic process in the list of options. By way of elimination, we have;
A) condensation of water on a wind shield of a car
Condensation is an exothermic process. That is, heat is given out as the gases change into the liquid state of matter.
B) formation of copper
This is an exothermic process. Capture of electrons by a cation is always exothermic.
C) ball rollinflown a hill
This is the correct option. Energy is absorbed by the ball as it moves on the hill
D) formation of ice from liquid water
Freezing is an example of exothermic reaction. Heat is given off to the surroundings.
E) oxide from copper and oxygen
Formation of metal oxides and most reactions involving oxygen are exothermic reactions,
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g
Because it relates to more than one branch of knowledge. It combines more than one academic disiplines.