Answer:
They are more stable than alkanes
Explanation:
- <em><u>Alkenes</u></em><em><u> are a type of unsaturated hydrocarbons </u></em>which means they have a<u> double bond</u> in their structure, or lack maximum number of hydrogen atoms on each carbon.
- Alkenes have a general formula of CnH2n. They are called <u>unsaturated hydrocarbons</u> since they have a double bond. They are therefore less stable compared to alkanes and also are readily reactive.
Answer:
The answer to your question is given after the questions so I just explain how to get it.
Explanation:
a)
Get the molecular weight of Phosphoric acid
H₃PO₄ = (3 x 1) + (31 x 1) + (16 x 4)
= 3 + 31 + 64
= 98 g
98 g ----------------- 1 mol
0.045 g --------------- x
x = (0.045 x 1) / 98
x = 0.045 / 98
x = 0.00046 moles or 4.6 x 10 ⁻⁴
b)
Molarity = 
Molarity = 
Molarity = 0.0013 or 1.31 x 10⁻³
c)
Formula C₁V₁ = C₂V₂
V₁ = C₂V₂ / C₁
Substitution
V₁ = (0.0013)(1) / 0.01
Simplification and result
V₁ = 0.0013 / 0.1
V₁ = 0.13 l = 130 ml
Answer:
lol I hate chemical but let me give some advice
Explanation:
Please go on Khan Academy or look at your notes and I promise you can figure out! Seriously, I am trying to be helpful not like the annoying teacher that says "figure it out"
Answer:
ΔS = -661.0J/mol is the entropy change for the system
ΔS = -842J/mol.K is the entropy change for the surroundings
Explanation:
From the relationship between ΔG, T, ΔH and ΔS,
Mathematically, ΔG = ΔH - TΔS
TΔS = ΔH - ΔS
ΔS = ΔH - ΔS / T
but ΔG = -54 kJ/mol, ΔH = -251 kJ/mol and T = 25 °C (298 K)
plugging into the equation,
ΔS = -251 kJ/mol - ( -54 kJ/mol) / 298
ΔS = -0.6610KJ/mol or in J.mol
ΔS = -661.0J/mol is the entropy change for the system
- For entropy change for the surroundings = ΔS = ΔH/T
- ΔS = -0.84KJ/mol.K or -842J/mol.K is the entropy change for the surroundings