Answer:
41 g
Explanation:
The equation of the reaction is;
Cr(NO3)3(aq)+Na3PO4(aq)=3NaNO3(s)+CrPO4(aq)
Number of moles of chromium nitrate = 37g/ 146.97 g/mol = 0.25 moles
1 mole of sodium phosphate reacts with 1 mole of chromium nitrate
x moles of sodium phosphate react as with 0.25 moles of chromium nitrate
x= 1 × 0.25/1
x= 0.25 moles
Mass of sodium phosphate = 0.25 moles × 163.94 g/mol
Mass of sodium phosphate = 41 g
Answer:
The strength of an acid or alkali depends on the degree of dissociation of the acid or alkali in water. The degree of dissociation measures the percentage of acid molecules that ionise when dissolved in water. He could use universal indicators or litmus paper for this.
Explanation:
(See answer for the explanation)
Answer:
Mar 29, 2015 · Their settlements are much more permanent and include houses, storage buildings, etc. They also need preservation methods and storage techniques, unlike the nomads. Sedentary Societies were first to be seen near waterways such as rivers.
Explanation:
Answer:
1.00 × 10¹⁸
Explanation:
1. Calculate the <em>energy of one photon</em>
The formula for the energy of a photon is
<em>E</em> = <em>hc</em>/λ
<em>h</em> = 6.626 × 10⁻³⁴ J·s; <em>c</em> = 2.998 × 10⁸ m·s⁻¹
λ = 477 nm = 477 × 10⁻⁹ m Insert the values
<em>E</em> = (6.626 × 10⁻³⁴ × 2.998× 10⁸)/(477 × 10⁻⁹)
<em>E</em> = 4.165× 10⁻¹⁹ J
2. Calculate the <em>number of photons</em>
Divide the total energy by the energy of one photon.
No. of photons = 0.418 × 1/4.165 × 10⁻¹⁹
No. of photons = 1.00 × 10¹⁸
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:
![2HI(g)\rightarrow H_2(g)+I_2(g) ](https://tex.z-dn.net/?f=2HI%28g%29%5Crightarrow%20H_2%28g%29%2BI_2%28g%29%0A)
Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = ![6.4\times 10^{-9} L/mol s](https://tex.z-dn.net/?f=6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s)
Order of the reaction = 2
Initial rate of reaction = ![R=1.6\times 10^{-7} Mol/L s](https://tex.z-dn.net/?f=R%3D1.6%5Ctimes%2010%5E%7B-7%7D%20Mol%2FL%20s)
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = ![4.53\times 10^{10} s](https://tex.z-dn.net/?f=4.53%5Ctimes%2010%5E%7B10%7D%20s)
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.