About 7-8 years More. The real answer would be 7.14285714286
<u>Answer:</u> The standard enthalpy change of the reaction is coming out to be -16.3 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_f(product)]-\sum [n\times \Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_f_{(MgCl_2(s))})+(2\times \Delta H_f_{(H_2O(g))})]-[(1\times \Delta H_f_{(Mg(OH)_2(s))})+(2\times \Delta H_f_{(HCl(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28MgCl_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Mg%28OH%29_2%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_f_%7B%28HCl%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-641.8))+(2\times (-241.8))]-[(1\times (-924.5))+(2\times (-92.30))]\\\\\Delta H_{rxn}=-16.3kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-641.8%29%29%2B%282%5Ctimes%20%28-241.8%29%29%5D-%5B%281%5Ctimes%20%28-924.5%29%29%2B%282%5Ctimes%20%28-92.30%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-16.3kJ)
Hence, the standard enthalpy change of the reaction is coming out to be -16.3 kJ
<span>1 ml of water weighs 1 gram so 1 liter (1000 ml) weighs 1000 grams. A 3% solution (3% = 0.03) of hydrogen peroxide (w/v) would contain 1000 grams x 0.03 or 30 grams. The chemical formula of hydrogen peroxide is H2O2 and a mole weighs 34.0147 grams/mole. So 30 grams of H2O2 divided by 34.0147 grams/mole equals 0.88 moles of H2O2. The concentration of a 3% (w/v) hydrogen peroxide solution therefore contains 30 grams of H202 (or 0.88 moles of H202) per in a liter of water (or 1000 grams H20) would thus be 0.88 moles H2O2 per liter (0.88 moles H2O2/l) .</span>
C.) wash hands, utensils, and surfaces with hot soapy water