Answer:
Fe₃Si₇
Explanation:
In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Determine the percent composition
Fe: 46.01%
Si: 53.99%
Step 2: Divide each percentage by the atomic mass of the element
Fe: 46.01/55.85 = 0.8238
Si: 53.99/28.09 = 1.922
Step 3: Divide all the numbers by the smallest one
Fe: 0.8238/0.8238 = 1
Si: 1.922/0.8238 = 2.33
Step 4: Multiply by numbers that make the coefficients whole.
Fe: 1 × 3 = 3
Si: 2.33 × 3 = 7
The empirical formula is Fe₃Si₇.
The idea here is that you need to figure out how many moles of magnesium chloride,
MgCl
2
, you need to have in the target solution, then use this value to determine what volume of the stock solution would contain this many moles.
As you know, molarity is defined as the number of moles of solute, which in your case is magnesium chloride, divided by liters of solution.
c
=
n
V
So, how many moles of magnesium chloride must be present in the target solution?
c
=
n
V
⇒
n
=
c
⋅
V
n
=
0.158 M
⋅
250.0
⋅
10
−
3
L
=
0.0395 moles MgCl
2
Now determine what volume of the target solution would contain this many moles of magnesium chloride
c
=
n
V
⇒
V
=
n
c
V
=
0.0395
moles
3.15
moles
L
=
0.01254 L
Rounded to three sig figs and expressed in mililiters, the volume will be
V
=
12.5 mL
So, to prepare your target solution, use a
12.5-mL
sample of the stock solution and add enough water to make the volume of the total solution equal to
250.0 mL
.
This is equivalent to diluting the
12.5-mL
sample of the stock solution by a dilution factor of
20
.
The given statement, some type of path is necessary to join both half-cells in order for electron flow to occur, is true.
Explanation:
Flow of electrons is possible with the help of a conducting medium like metal wire.
A laboratory device which helps in completion of oxidation and reduction-half reactions of a galvanic or voltaic cell is known as salt bridge. Basically, this salt bridge helps in the flow of electrons from anode to cathode and vice-versa.
If salt bridge is not present in an electrochemical cell, the electron neutrality will not be maintained and hence, flow of electrons will not take place.
Thus, we can conclude that the statement some type of path is necessary to join both half-cells in order for electron flow to occur, is true.
The answer is d the inflation scale