The definition of a gem is "a precious stone, cut and polished for jewelry. They are all minerals. Some highly desirable gemstones may not be suitable for jewelry, yet be very collectible, like sphene. Others, like those in the corundum family, are prized for color and hardness, like emeralds and diamonds. Further, some common minerals, when polished, make beautiful pieces. With all that said, i woukd go with rarer.
<u>Answer:</u> The given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<u>Explanation:</u>
We are given:
Moles of iron = 12.0 moles
The chemical equation for the rusting of iron follows:

By Stoichiometry of the reaction:
4 moles of iron reacts with 3 moles of oxygen gas
So, 12.0 moles of iron will react with =
of oxygen gas
- <u>For iron (III) oxide:</u>
By Stoichiometry of the reaction:
4 moles of iron produces 2 moles of iron (III) oxide
So, 12.0 moles of iron will produce =
of iron (III) oxide
Hence, the given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<h3>
Answer:</h3>
18.9 g F₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.00 × 10²³ molecules F₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of F₂ (Diatomic) - 38.00 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
18.9306 g F₂ ≈ 18.9 g F₂
Analytical
Analytical chemistry seeks to determine the composition of substances.
First I would have a pot of soil and a carrot (without fertilizer) then a pot of soli ,with fertilizer and a carrot. Then I would watch them for the same amount of time and identify weather the soil impacted the decomposition of the carrot and repeat this twice.
Same size pots
Same size carrots
Same soil
Same growth area