Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
195.168 m
Explanation:
To find the magnitude of the vector you can use the Pythagorean Theorem since you have the height and base and the vector is really just the hypotenuse
Pythagorean Theorem:

Plug values in

Simplify

Add the two values

Take the square root of both sides

Answer:
Zero
Explanation:
Given the equation of an ellipse:

The eccentrity of an ellipse is given by:

For a circle, we have

Therefore the eccentricity of a circle is

The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4
1. A. 6.00 sec
The graph shows the velocity of an object (y-axis) versus the time (x-axis). In order to find when the magnitude of the velocity reaches 36.00 km/h, we should find the time t (x-coordinate) at which the velocity (y-coordinate) is 36.
By looking at the graph, we see that this occurs when t=6.00 s.
2. A. positive acceleration
In a velocity-time graph like this one, the slope of the curve corresponds to the acceleration of the object. In fact, acceleration is defined as:

where
is the variation of velocity and
is the variation of time. We see that this quantity corresponds to the slope of the curve in the graph (in fact,
represents the increment of the y coordinate, while
represents the increment of the x coordinate). So, a positive slope means a positive acceleration: in this case, the slope is positive, so the acceleration is also positive.