8. In soft magnetic materials such as iron, what happens when an external magnetic field is removed?
a. The domain alignment persists.
b. The orientation of domains fluctuates.
c. The material becomes a hard magnetic material.
d. The orientation of domains changes, and the material returns to an unmagnetized state.
9. According to Lenz’s law, if the applied magnetic field changes,
a. the induced field attempts to keep the total field strength constant.
b. the induced field attempts to increase the total field strength.
c. the induced field attempts to decrease the total field strength.
d. the induced field attempts to oscillate about an equilibrium value.
10. The direction of the force on a current-carrying wire in an external magnetic field is
a. perpendicular to the current only.
b. perpendicular to the magnetic field only.
c. perpendicular to the current and to the magnetic field.
d. parallel to the current and to the magnetic field
Answer:
True
Explanation:
If a thin, spherical, conducting shell carries a negative charge, We expect the excess electrons to mutually repel one another, and, thereby, become uniformly distributed over the surface of the shell. The electric field-lines produced outside such a charge distribution point towards the surface of the conductor, and end on the excess electrons. Moreover, the field-lines are normal to the surface of the conductor. This must be the case, otherwise the electric field would have a component parallel to the conducting surface. Since the excess electrons are free to move through the conductor, any parallel component of the field would cause a redistribution of the charges on the shell. This process will only cease when the parallel component has been reduced to zero over the whole surface of the shell
According to Gauss law
∅ = EA =-Q/∈₀
Where ∅ is the electric flux through the gaussian surface and E is the electric field strength
If the gaussian surface encloses no charge, since all of the charge lies on the shell, so it follows from Gauss' law, and symmetry, that the electric field inside the shell is zero. In fact, the electric field inside any closed hollow conductor is zero
Answer:
The maximum emf induced in the ring
= (2.882 × 10⁻⁷) V
Explanation:
According to the law of electromagnetic induction, the emf induced in the ring is given by
E = N BA w sin wt
The maximum emf induced is
E = N BA w
B = 30.5 μT = (30.5 × 10⁻⁶) T
A = (πD²/4)
D = 1.75 cm = 0.0175 m
A = (π×0.0175²/4) = 0.000240625 m²
Nw = 2π × 6.25 = 39.29 rad/s
E = 30.5 × 10⁻⁶ × 0.000240625 × 39.29
E = (2.882 × 10⁻⁷) V
Hope this Helps!!!
Answer:
Initial velocity describes how fast an object travels when gravity first applies force on the object. On the other hand, the final velocity is a vector quantity that measures the speed and direction of a moving body after it has reached its maximum acceleration.
Explanation:
Answer:
They would land at the same time
Explanation:
They would land at the same exact time.
As weird, impossible and unbelievable as it appears. When in a vacuum, every weight, body and material when released from the same height would land on the ground at the same time. This also means that like in the question, a feather and a ball would land at the same time. And just for illustrations as well, a feather and a car would land at the same time as well.