Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
Answer:
please do well to ask questions in English. This will help people provide you answers ASAP. Thank you
Answer:
Option b. is correct
Explanation:
An RLC electrical circuit consists of constituent components: a resistor (R), an inductor (L), and a capacitor (C). A resistor, an inductor, and a capacitor are connected in series or parallel.
The impedances of the circuit elements depend on the frequency.
Both impedance magnitudes decrease when the frequency increases