Answer:
See the attached pictures for detailed steps.
Explanation:
Answer:
Ro = 7.8 [g/cm³]
Explanation:
According to the principle of Archimedes, the volume of a body immersed in a liquid is equal to the volume displaced by water. That is, in this problem The displacement volume is equal to the new volume minus the original volume.
![V_{n}=110[cm^{3} ]\\V_{o}=100[cm^{3} ]\\V_{d}=110-100 = 10 [cm^{3} ]](https://tex.z-dn.net/?f=V_%7Bn%7D%3D110%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bo%7D%3D100%5Bcm%5E%7B3%7D%20%5D%5C%5CV_%7Bd%7D%3D110-100%20%3D%2010%20%5Bcm%5E%7B3%7D%20%5D)
We now know that density is defined as the relationship between mass and volume.

where:
Ro = density [g/cm³]
m = mass = 78 [g]
Vd = displacement volume [cm³]
![Ro = 78/10\\Ro = 7.8 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%20%3D%2078%2F10%5C%5CRo%20%3D%207.8%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
Answer:
Camilla
Explanation:
I got it right on edge. :)
C. a lot of inertia.............................. :-)
The box is kept in motion at constant velocity by a force of F=99 N. Constant velocity means there is no acceleration, so the resultant of the forces acting on the box is zero. Apart from the force F pushing the box, there is only another force acting on it in the horizontal direction: the frictional force

which acts in the opposite direction of the motion, so in the opposite direction of F.
Therefore, since the resultant of the two forces must be zero,

so

The frictional force can be rewritten as

where

,

. Re-arranging, we can solve this equation to find

, the coefficient of dynamic friction: